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Diffraction

What Is Physics?
One focus of physics in the study of light is to understand and put to use the
diffraction of light as it passes through a narrow slit or (as we shall discuss) past
either a narrow obstacle or an edge.We touched on this phenomenon in Chapter 35
when we looked at how light flared—diffracted—through the slits in Young’s
experiment. Diffraction through a given slit is more complicated than simple
flaring, however, because the light also interferes with itself and produces an
interference pattern. It is because of such complications that light is rich with
application opportunities. Even though the diffraction of light as it passes
through a slit or past an obstacle seems awfully academic, countless engineers
and scientists make their living using this physics, and the total worth of diffrac-
tion applications worldwide is probably incalculable.

Before we can discuss some of these applications, we first must discuss why
diffraction is due to the wave nature of light.

Diffraction and the Wave Theory of Light
In Chapter 35 we defined diffraction rather loosely as the flaring of light as it
emerges from a narrow slit. More than just flaring occurs, however, because the
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After reading this module, you should be able to . . .

36.01 Describe the diffraction of light waves by a narrow opening
and an edge, and also describe the resulting interference pattern.

36.02 Describe an experiment that demonstrates the
Fresnel bright spot.

36.03 With a sketch, describe the arrangement for a 
single-slit diffraction experiment.

36.04 With a sketch, explain how splitting a slit width into 
equal zones leads to the equations giving the angles to the
minima in the diffraction pattern.

36.05 Apply the relationships between width a of a thin,

rectangular slit or object, the wavelength l, the angle u to
any of the minima in the diffraction pattern, the distance to
a viewing screen, and the distance between a minimum
and the center of the pattern.

36.06 Sketch the diffraction pattern for monochromatic light, iden-
tifying what lies at the center and what the various bright and
dark fringes are called (such as “first minimum”).

36.07 Identify what happens to a diffraction pattern when
the wavelength of the light or the width of the diffracting
aperture or object is varied.

●When waves encounter an edge, an obstacle, or an aperture
the size of which is comparable to the wavelength of the waves,
those waves spread out as they travel and, as a result, undergo
interference. This type of interference is called diffraction.

●Waves passing through a long narrow slit of width a
produce, on a viewing screen, a single-slit diffraction 

pattern that includes a central maximum (bright fringe) and other
maxima. They are separated by minima that are located relative
to the central axis by angles u:

a sin u�ml, for m� 1, 2, 3, . . . (minima).

● The maxima are located approximately halfway between minima.

Learning Objectives

Key Ideas



light produces an interference pattern called a diffraction pattern. For example, when
monochromatic light from a distant source (or a laser) passes through a narrow slit
and is then intercepted by a viewing screen, the light produces on the screen a diffrac-
tion pattern like that in Fig. 36-1. This pattern consists of a broad and intense (very
bright) central maximum plus a number of narrower and less intense maxima (called
secondary or side maxima) to both sides. In between the maxima are minima. Light
flares into those dark regions, but the light waves cancel out one another.

Such a pattern would be totally unexpected in geometrical optics: If light
traveled in straight lines as rays, then the slit would allow some of those rays
through to form a sharp rendition of the slit on the viewing screen instead of a
pattern of bright and dark bands as we see in Fig. 36-1. As in Chapter 35, we must
conclude that geometrical optics is only an approximation.

Edges. Diffraction is not limited to situations in which light passes through a
narrow opening (such as a slit or pinhole). It also occurs when light passes an
edge, such as the edges of the razor blade whose diffraction pattern is shown in
Fig. 36-2. Note the lines of maxima and minima that run approximately parallel to
the edges, at both the inside edges of the blade and the outside edges. As the light
passes, say, the vertical edge at the left, it flares left and right and undergoes inter-
ference, producing the pattern along the left edge. The rightmost portion of that
pattern actually lies behind the blade, within what would be the blade’s shadow if
geometrical optics prevailed.

Floaters. You encounter a common example of diffraction when you look at a
clear blue sky and see tiny specks and hairlike structures floating in your view.These
floaters, as they are called, are produced when light passes the edges of tiny deposits
in the vitreous humor, the transparent material filling most of the eyeball.What you
are seeing when a floater is in your field of vision is the diffraction pattern produced
on the retina by one of these deposits. If you sight through a pinhole in a piece of
cardboard so as to make the light entering your eye approximately a plane wave, you
can distinguish individual maxima and minima in the patterns.

Cheerleaders. Diffraction is a wave effect. That is, it occurs because light is a
wave and it occurs with other types of waves as well. For example, you have prob-
ably seen diffraction in action at football games. When a cheerleader near the
playing field yells up at several thousand noisy fans, the yell can hardly be heard
because the sound waves diffract when they pass through the narrow opening of
the cheerleader’s mouth. This flaring leaves little of the waves traveling toward
the fans in front of the cheerleader. To offset the diffraction, the cheerleader can
yell through a megaphone. The sound waves then emerge from the much wider
opening at the end of the megaphone.The flaring is thus reduced, and much more
of the sound reaches the fans in front of the cheerleader.

The Fresnel Bright Spot
Diffraction finds a ready explanation in the wave theory of light. However, this the-
ory, originally advanced in the late 1600s by Huygens and used 123 years later by
Young to explain double-slit interference, was very slow in being adopted, largely
because it ran counter to Newton’s theory that light was a stream of particles.

Newton’s view was the prevailing view in French scientific circles of the early 19th
century, when Augustin Fresnel was a young military engineer. Fresnel, who believed
in the wave theory of light, submitted a paper to the French Academy of Sciences de-
scribing his experiments with light and his wave-theory explanations of them.

In 1819, the Academy, dominated by supporters of Newton and thinking to
challenge the wave point of view, organized a prize competition for an essay on the
subject of diffraction. Fresnel won. The Newtonians, however, were not swayed.
One of them, S. D. Poisson, pointed out the “strange result” that if Fresnel’s theories
were correct, then light waves should flare into the shadow region of a sphere
as they pass the edge of the sphere, producing a bright spot at the center of
the shadow. The prize committee arranged a test of Poisson’s prediction and dis-
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Figure 36-2 The diffraction pattern produced
by a razor blade in monochromatic light.
Note the lines of alternating maximum and
minimum intensity.

Figure 36-1 This diffraction pattern appeared
on a viewing screen when light that had
passed through a narrow vertical slit
reached the screen. Diffraction caused the
light to flare out perpendicular to the long
sides of the slit.That flaring produced an
interference pattern consisting of a broad
central maximum plus less intense and nar-
rower secondary (or side) maxima, with
minima between them.



covered that the predicted Fresnel bright spot, as we call it today, was indeed there
(Fig. 36-3). Nothing builds confidence in a theory so much as having one of its unex-
pected and counterintuitive predictions verified by experiment.

Diffraction by a Single Slit: Locating the Minima
Let us now examine the diffraction pattern of plane waves of light of wavelength
l that are diffracted by a single long, narrow slit of width a in an otherwise
opaque screen B, as shown in cross section in Fig. 36-4. (In that figure, the slit’s
length extends into and out of the page, and the incoming wavefronts are parallel
to screen B.) When the diffracted light reaches viewing screen C, waves from
different points within the slit undergo interference and produce a diffraction
pattern of bright and dark fringes (interference maxima and minima) on the
screen. To locate the fringes, we shall use a procedure somewhat similar to the
one we used to locate the fringes in a two-slit interference pattern. However,
diffraction is more mathematically challenging, and here we shall be able to find
equations for only the dark fringes.

Before we do that, however, we can justify the central bright fringe seen in
Fig. 36-1 by noting that the Huygens wavelets from all points in the slit travel
about the same distance to reach the center of the pattern and thus are in phase
there.As for the other bright fringes, we can say only that they are approximately
halfway between adjacent dark fringes.

Pairings. To find the dark fringes, we shall use a clever (and simplifying)
strategy that involves pairing up all the rays coming through the slit and then
finding what conditions cause the wavelets of the rays in each pair to cancel each
other.We apply this strategy in Fig. 36-4 to locate the first dark fringe, at point P1.
First, we mentally divide the slit into two zones of equal widths a/2. Then we ex-
tend to P1 a light ray r1 from the top point of the top zone and a light ray r2 from
the top point of the bottom zone. We want the wavelets along these two rays to
cancel each other when they arrive at P1. Then any similar pairing of rays from
the two zones will give cancellation.A central axis is drawn from the center of the
slit to screen C, and P1 is located at an angle u to that axis.

Path Length Difference. The wavelets of the pair of rays r1 and r2 are in
phase within the slit because they originate from the same wavefront passing
through the slit, along the width of the slit. However, to produce the first dark
fringe they must be out of phase by l/2 when they reach P1; this phase difference
is due to their path length difference, with the path traveled by the wavelet of r2

to reach P1 being longer than the path traveled by the wavelet of r1. To display
this path length difference, we find a point b on ray r2 such that the path length
from b to P1 matches the path length of ray r1.Then the path length difference be-
tween the two rays is the distance from the center of the slit to b.

When viewing screen C is near screen B, as in Fig. 36-4, the diffraction
pattern on C is difficult to describe mathematically. However, we can simplify the
mathematics considerably if we arrange for the screen separation D to be much
larger than the slit width a.Then, as in Fig. 36-5, we can approximate rays r1 and r2
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Figure 36-3 A photograph of the diffraction
pattern of a disk. Note the concentric
diffraction rings and the Fresnel bright
spot at the center of the pattern.This
experiment is essentially identical to
that arranged by the committee testing
Fresnel’s theories, because both the sphere
they used and the disk used here have a
cross section with a circular edge.
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This pair of rays cancel
each other at P1. So 
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Figure 36-4 Waves from the top points of two
zones of width a/2 undergo fully destructive
interference at point P1 on viewing screen C.

Figure 36-5 For D a, we can
approximate rays r1 and r2 as
being parallel, at angle u to the
central axis.
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as being parallel, at angle u to the central axis.We can also approximate the trian-
gle formed by point b, the top point of the slit, and the center point of the slit as
being a right triangle, and one of the angles inside that triangle as being u. The
path length difference between rays r1 and r2 (which is still the distance from the
center of the slit to point b) is then equal to (a/2) sin u.

First Minimum. We can repeat this analysis for any other pair of rays origi-
nating at corresponding points in the two zones (say, at the midpoints of the
zones) and extending to point P1. Each such pair of rays has the same path length
difference (a/2) sin u. Setting this common path length difference equal to l/2
(our condition for the first dark fringe), we have

which gives us

a sin u� l (first minimum). (36-1)

Given slit width a and wavelength l, Eq. 36-1 tells us the angle u of the first dark
fringe above and (by symmetry) below the central axis.

Narrowing the Slit. Note that if we begin with a� l and then narrow the slit
while holding the wavelength constant, we increase the angle at which the first
dark fringes appear; that is, the extent of the diffraction (the extent of the flaring
and the width of the pattern) is greater for a narrower slit.When we have reduced
the slit width to the wavelength (that is, a� l), the angle of the first dark fringes
is 90°. Since the first dark fringes mark the two edges of the central bright fringe,
that bright fringe must then cover the entire viewing screen.

Second Minimum. We find the second dark fringes above and below the
central axis as we found the first dark fringes, except that we now divide the slit
into four zones of equal widths a/4, as shown in Fig. 36-6a.We then extend rays r1,
r2, r3, and r4 from the top points of the zones to point P2, the location of the sec-
ond dark fringe above the central axis.To produce that fringe, the path length dif-
ference between r1 and r2, that between r2 and r3, and that between r3 and r4 must
all be equal to l/2.

For D � a, we can approximate these four rays as being parallel, at angle u to
the central axis. To display their path length differences, we extend a perpendi-
cular line through each adjacent pair of rays, as shown in Fig. 36-6b, to form a se-
ries of right triangles, each of which has a path length difference as one side.
We see from the top triangle that the path length difference between r1 and r2 is
(a/4) sin u. Similarly, from the bottom triangle, the path length difference between
r3 and r4 is also (a/4) sin u. In fact, the path length difference for any two rays that
originate at corresponding points in two adjacent zones is (a/4) sin u. Since in
each such case the path length difference is equal to l/2, we have

which gives us

a sin u� 2l (second minimum). (36-2)

All Minima. We could now continue to locate dark fringes in the diffraction
pattern by splitting up the slit into more zones of equal width. We would always
choose an even number of zones so that the zones (and their waves) could be
paired as we have been doing. We would find that the dark fringes above and be-
low the central axis can be located with the general equation

a sin u� ml, for m � 1, 2, 3, . . . (minima —dark fringes). (36-3)

You can remember this result in the following way. Draw a triangle like the
one in Fig. 36-5, but for the full slit width a, and note that the path length differ-
ence between the top and bottom rays equals a sin u.Thus, Eq. 36-3 says:

a
4

 sin u �
l

2
,

a
2

 sin u �
l

2
,
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Figure 36-6 (a) Waves from the top points
of four zones of width a/4 undergo fully 
destructive interference at point P2. (b) For
D� a, we can approximate rays r1, r2, r3,
and r4 as being parallel,at angle u to the
central axis.
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This may seem to be wrong because the waves of those two particular rays will be
exactly in phase with each other when their path length difference is an integer
number of wavelengths. However, they each will still be part of a pair of waves
that are exactly out of phase with each other; thus, each wave will be canceled by
some other wave, resulting in darkness. (Two light waves that are exactly out of
phase will always cancel each other, giving a net wave of zero, even if they happen
to be exactly in phase with other light waves.)

Using a Lens. Equations 36-1, 36-2, and 36-3 are derived for the case of D � a.
However, they also apply if we place a converging lens between the slit and the view-
ing screen and then move the screen in so that it coincides with the focal plane of the
lens. The lens ensures that rays which now reach any point on the screen are exactly
parallel (rather than approximately) back at the slit.They are like the initially parallel
rays of Fig.34-14a that are directed to the focal point by a converging lens.
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In a single-slit diffraction experiment, dark fringes are produced where the
path length differences (a sin u) between the top and bottom rays are equal
to l, 2l, 3l, . . . .

Checkpoint 1
We produce a diffraction pattern on a viewing screen by means of a long narrow
slit illuminated by blue light. Does the pattern expand away from the bright center
(the maxima and minima shift away from the center) or contract toward it if we
(a) switch to yellow light or (b) decrease the slit width?

KEY IDEA

The first side maximum for any wavelength is about halfway
between the first and second minima for that wavelength.

Calculations: Those first and second minima can be located
with Eq. 36-3 by setting m � 1 and m� 2, respectively.Thus,
the first side maximum can be located approximately by
setting m� 1.5.Then Eq. 36-3 becomes

a sin u� 1.5l�.

Solving for l� and substituting known data yield

(Answer)

Light of this wavelength is violet (far blue, near the short-
wavelength limit of the human range of visible light). From
the two equations we used, can you see that the first side
maximum for light of wavelength 430 nm will always coin-
cide with the first minimum for light of wavelength 650 nm,
no matter what the slit width is? However, the angle u at
which this overlap occurs does depend on slit width. If the
slit is relatively narrow, the angle will be relatively large, and
conversely.

� 430 nm.

l� �
a sin u

1.5
�

(2511 nm)(sin 15�)
1.5

Sample Problem 36.01 Single-slit diffraction pattern with white light

A slit of width a is illuminated by white light.

(a) For what value of a will the first minimum for red light of
wavelength l � 650 nm appear at u � 15°?

KEY IDEA

Diffraction occurs separately for each wavelength in the
range of wavelengths passing through the slit, with the loca-
tions of the minima for each wavelength given by Eq. 36-3
(a sin u � ml).

Calculation: When we set m � 1 (for the first minimum)
and substitute the given values of u and l, Eq. 36-3 yields

(Answer)

For the incident light to flare out that much (�15° to the first
minima) the slit has to be very fine indeed—in this case, a
mere four times the wavelength. For comparison, note that
a fine human hair may be about 100 mm in diameter.

(b) What is the wavelength l� of the light whose first side
diffraction maximum is at 15°, thus coinciding with the first
minimum for the red light?

� 2511 nm � 2.5 mm.

a �
ml

sin u
�

(1)(650 nm)
sin 15�

Additional examples, video, and practice available at WileyPLUS
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36-2 INTENSITY IN SINGLE-SLIT DIFFRACTION

After reading this module, you should be able to . . .

36.08 Divide a thin slit into multiple zones of equal width
and write an expression for the phase difference of the
wavelets from adjacent zones in terms of the angle u to a
point on the viewing screen.

36.09 For single-slit diffraction, draw phasor diagrams for
the central maximum and several of the minima and maxima off
to one side, indicating the phase difference between adjacent
phasors, explaining how the net electric field is calculated, and

identifying the corresponding part of the diffraction pattern.
36.10 Describe a diffraction pattern in terms of the net electric

field at points in the pattern.
36.11 Evaluate a, the convenient connection between angle u to

a point in a diffraction pattern and the intensity I at that point.
36.12 For a given point in a diffraction pattern, at a given 

angle, calculate the intensity I in terms of the intensity 
Im at the center of the pattern.

Learning Objectives

● The intensity of the diffraction pattern at any given angle is

I(u) � Im� sin a

a �
2

,

u

Key Idea
where Im is the intensity at the center of the pattern and

a �
pa
l

 sin u.

Intensity in Single-Slit Diffraction, Qualitatively
In Module 36-1 we saw how to find the positions of the minima and the maxima
in a single-slit diffraction pattern. Now we turn to a more general problem: find
an expression for the intensity I of the pattern as a function of u, the angular posi-
tion of a point on a viewing screen.

To do this, we divide the slit of Fig. 36-4 into N zones of equal widths �x small
enough that we can assume each zone acts as a source of Huygens wavelets. We
wish to superimpose the wavelets arriving at an arbitrary point P on the viewing
screen, at angle u to the central axis, so that we can determine the amplitude Eu of
the electric component of the resultant wave at P.The intensity of the light at P is
then proportional to the square of that amplitude.

To find Eu, we need the phase relationships among the arriving wavelets. The
point here is that in general they have different phases because they travel different
distances to reach P. The phase difference between wavelets from adjacent zones
is given by

For point P at angle u, the path length difference between wavelets from adjacent
zones is �x sin u.Thus, we can write the phase difference �f between wavelets from
adjacent zones as

(36-4)

We assume that the wavelets arriving at P all have the same amplitude �E.
To find the amplitude Eu of the resultant wave at P, we add the amplitudes �E via
phasors. To do this, we construct a diagram of N phasors, one corresponding to
the wavelet from each zone in the slit.

Central Maximum. For point P0 at u � 0 on the central axis of Fig. 36-4,
Eq. 36-4 tells us that the phase difference �f between the wavelets is zero; that is,
the wavelets all arrive in phase. Figure 36-7a is the corresponding phasor dia-
gram; adjacent phasors represent wavelets from adjacent zones and are arranged
head to tail. Because there is zero phase difference between the wavelets, there is
zero angle between each pair of adjacent phasors. The amplitude Eu of the net

�f � � 2p

l � (�x sin u).

� phase
difference� � � 2p

l � �
path length
difference �.



wave at P0 is the vector sum of these phasors. This arrangement of the phasors
turns out to be the one that gives the greatest value for the amplitude Eu. We call
this value Em; that is, Em is the value of Eu for u � 0.

We next consider a point P that is at a small angle u to the central axis.
Equation 36-4 now tells us that the phase difference �f between wavelets from
adjacent zones is no longer zero. Figure 36-7b shows the corresponding phasor
diagram; as before, the phasors are arranged head to tail, but now there is an
angle �f between adjacent phasors.The amplitude Eu at this new point is still the
vector sum of the phasors, but it is smaller than that in Fig. 36-7a, which means
that the intensity of the light is less at this new point P than at P0.

First Minimun. If we continue to increase u, the angle �f between adjacent pha-
sors increases, and eventually the chain of phasors curls completely around so that the
head of the last phasor just reaches the tail of the first phasor (Fig. 36-7c).The ampli-
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A

Figure 36-7 Phasor diagrams for N � 18 phasors, cor-
responding to the division of a single slit into
18 zones. Resultant amplitudes Eu are shown for (a)
the central maximum at u � 0, (b) a point on the
screen lying at a small angle u to the central axis, (c)
the first minimum, and (d) the first side maximum.
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Here, with an even larger
phase difference, they add
to give a small amplitude
and thus a small intensity.

The last phasor is out of
phase with the first phasor
by 2   rad (full circle).

Here, with a larger phase
difference, the phasors add
to give zero amplitude and
thus a minimum in the pattern.

Here the phasors have a small
phase difference and add to give
a smaller amplitude and thus
less intensity in the pattern.

The phasors from the 18 zones
in the slit are in phase and add
to give a maximum amplitude
and thus the central maximum
in the diffraction pattern.

π



tude Eu is now zero, which means that the intensity of the light is also zero. We have
reached the first minimum, or dark fringe, in the diffraction pattern.The first and last
phasors now have a phase difference of 2p rad, which means that the path length dif-
ference between the top and bottom rays through the slit equals one wavelength.
Recall that this is the condition we determined for the first diffraction minimum.

First Side Maximum. As we continue to increase u, the angle �f between
adjacent phasors continues to increase, the chain of phasors begins to wrap back
on itself, and the resulting coil begins to shrink.Amplitude Eu now increases until
it reaches a maximum value in the arrangement shown in Fig. 36-7d.This arrange-
ment corresponds to the first side maximum in the diffraction pattern.

Second Minimum. If we increase u a bit more, the resulting shrinkage of
the coil decreases Eu, which means that the intensity also decreases. When u is
increased enough, the head of the last phasor again meets the tail of the first pha-
sor.We have then reached the second minimum.

We could continue this qualitative method of determining the maxima and
minima of the diffraction pattern but, instead, we shall now turn to a quantitative
method.
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Checkpoint 2
The figures represent, in smoother form (with more phasors)
than Fig.36-7, the phasor diagrams for two points of a diffraction
pattern that are on opposite sides of a certain diffraction maxi-
mum.(a) Which maximum is it? (b) What is the approximate
value of m (in Eq.36-3) that corresponds to this maximum? (a) (b)

Intensity in Single-Slit Diffraction, Quantitatively
Equation 36-3 tells us how to locate the minima of the single-slit diffraction pat-
tern on screen C of Fig. 36-4 as a function of the angle u in that figure. Here we
wish to derive an expression for the intensity I(u) of the pattern as a function of u.
We state, and shall prove below, that the intensity is given by

(36-5)

where (36-6)

The symbol a is just a convenient connection between the angle u that locates a
point on the viewing screen and the light intensity I(u) at that point.The intensity
Im is the greatest value of the intensities I(u) in the pattern and occurs at the cen-
tral maximum (where u � 0), and f is the phase difference (in radians) between
the top and bottom rays from the slit of width a.

Study of Eq. 36-5 shows that intensity minima will occur where

a� mp, for m � 1, 2, 3, . . . . (36-7)

If we put this result into Eq. 36-6, we find

or a sin u � ml, for m� 1, 2, 3, . . . (minima —dark fringes), (36-8)

which is exactly Eq. 36-3, the expression that we derived earlier for the location
of the minima.

mp �
pa
l

 sin u,    for m � 1, 2, 3, . . . ,

a � 1
2f �

pa
l

 sin u.

I(u) � Im � sin a

a �
2

,



Plots. Figure 36-8 shows plots of the intensity of a single-slit diffraction pattern,
calculated with Eqs. 36-5 and 36-6 for three slit widths: a� l, a� 5l, and a� 10l.
Note that as the slit width increases (relative to the wavelength), the width of the
central diffraction maximum (the central hill-like region of the graphs) decreases;
that is, the light undergoes less flaring by the slit. The secondary maxima also de-
crease in width (and become weaker). In the limit of slit width a being much greater
than wavelength l, the secondary maxima due to the slit disappear; we then no
longer have single-slit diffraction (but we still have diffraction due to the edges of
the wide slit, like that produced by the edges of the razor blade in Fig.36-2).

Proof of Eqs. 36-5 and 36-6
To find an expression for the intensity at a point in the diffraction pattern, we
need to divide the slit into many zones and then add the phasors corresponding to
those zones, as we did in Fig. 36-7. The arc of phasors in Fig. 36-9 represents
the wavelets that reach an arbitrary point P on the viewing screen of Fig. 36-4, corre-
sponding to a particular small angle u.The amplitude Eu of the resultant wave at P is
the vector sum of these phasors. If we divide the slit of Fig. 36-4 into infinitesimal
zones of width x, the arc of phasors in Fig. 36-9 approaches the arc of a circle; we
call its radius R as indicated in that figure.The length of the arc must be Em, the am-
plitude at the center of the diffraction pattern, because if we straightened out the arc
we would have the phasor arrangement of Fig.36-7a (shown lightly in Fig. 36-9).

The angle f in the lower part of Fig. 36-9 is the difference in phase between
the infinitesimal vectors at the left and right ends of arc Em. From the geometry, f
is also the angle between the two radii marked R in Fig. 36-9. The dashed line in
that figure, which bisects f, then forms two congruent right triangles. From either
triangle we can write

(36-9)

In radian measure, f is (with Em considered to be a circular arc)

Solving this equation for R and substituting in Eq. 36-9 lead to

(36-10)

Intensity. In Module 33-2 we saw that the intensity of an electromagnetic
wave is proportional to the square of the amplitude of its electric field. Here, this
means that the maximum intensity Im (at the center of the pattern) is propor-
tional to and the intensity I(u) at angle u is proportional to Thus,

(36-11)

Substituting for Eu with Eq. 36-10 and then substituting we are led to Eq.
36-5 for the intensity as a function of u:

The second equation we wish to prove relates a to u. The phase difference f
between the rays from the top and bottom of the entire slit may be related to a
path length difference with Eq. 36-4; it tells us that

where a is the sum of the widths �x of the infinitesimal zones. However, f� 2a,
so this equation reduces to Eq. 36-6.

f � � 2p

l � (a sin u),

I(u) � Im � sin a

a �
2

.

a � 1
2f,

I(u)
Im
�

E 2
u

E 2
m
.

E2
u.E2

m

Eu �
Em
1
2f

 sin 12�.

f �
Em

R
.

sin 1
2f �

Eu

2R
.

�
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Figure 36-8 The relative intensity in single-slit
diffraction for three values of the ratio a/l.
The wider the slit is, the narrower is the
central diffraction maximum.
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Figure 36-9 A construction used to calculate
the intensity in single-slit diffraction.The
situation shown corresponds to that of 
Fig. 36-7b.
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Checkpoint 3
Two wavelengths, 650 and 430 nm,
are used separately in a single-slit dif-
fraction experiment.The figure
shows the results as graphs of inten-
sity I versus angle u for the two dif-
fraction patterns. If both wavelengths
are then used simultaneously, what
color will be seen in the combined
diffraction pattern at (a) angle A
and (b) angle B? 0 A B

I

θ 

intensities at those maxima, we get

The first of the secondary maxima occurs for m � 1, and its
relative intensity is

(Answer)

For m � 2 and m� 3 we find that

(Answer)

As you can see from these results, successive secondary
maxima decrease rapidly in intensity. Figure 36-1 was delib-
erately overexposed to reveal them.

I2

Im
� 1.6%  and  

I3

Im
� 0.83%.

� 4.50 � 10�2 � 4.5%.

I1

Im
� � sin(1 � 1

2)p

(1 � 1
2)p �

2

� � sin 1.5p

1.5p �
2

I
Im
�� sin a

a �
2

� � sin(m � 1
2)p

(m � 1
2)p �

2

,  for m� 1, 2, 3, . . . .

Sample Problem 36.02 Intensities of the maxima in a single-slit interference pattern

Find the intensities of the first three secondary maxima
(side maxima) in the single-slit diffraction pattern of Fig. 36-1,
measured as a percentage of the intensity of the central
maximum.

KEY IDEAS

The secondary maxima lie approximately halfway between
the minima, whose angular locations are given by Eq. 36-7
(a � mp). The locations of the secondary maxima are then
given (approximately) by

with a in radian measure. We can relate the intensity I at
any point in the diffraction pattern to the intensity Im of the
central maximum via Eq. 36-5.

Calculations: Substituting the approximate values of a for
the secondary maxima into Eq. 36-5 to obtain the relative

a � (m � 1
2 )p,    for m � 1, 2, 3, . . . ,

Additional examples, video, and practice available at WileyPLUS

36-3 DIFFRACTION BY A CIRCULAR APERTURE

After reading this module, you should be able to . . .

36.13 Describe and sketch the diffraction pattern from a
small circular aperture or obstacle.

36.14 For diffraction by a small circular aperture or obstacle,
apply the relationships between the angle u to the first
minimum, the wavelength l of the light, the diameter d of
the aperture, the distance D to a viewing screen, and the
distance y between the minimum and the center of the
diffraction pattern.

36.15 By discussing the diffraction patterns of point objects,

explain how diffraction limits visual resolution of objects.
36.16 Identify that Rayleigh’s criterion for resolvability gives

the (approximate) angle at which two point objects are just
barely resolvable.

36.17 Apply the relationships between the angle uR in
Rayleigh’s criterion, the wavelength l of the light, the
diameter d of the aperture (for example, the diameter of
the pupil of an eye), the angle u subtended by two distant
point objects, and the distance L to those objects.

Learning Objectives
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● Diffraction by a circular aperture or a lens with 
diameter d produces a central maximum and concentric
maxima and minima, with the first minimum at an angle u
given by

(first minimum— circular aperture).

● Rayleigh’s criterion suggests that two objects are on the

sin u � 1.22
l

d

Key Ideas
verge of resolvability if the central diffraction maximum of one
is at the first minimum of the other. Their angular separation
can then be no less than

(Rayleigh’s criterion),

in which d is the diameter of the aperture through which the
light passes.

uR � 1.22
l

d

Diffraction by a Circular Aperture
Here we consider diffraction by a circular aperture— that is, a circular opening,
such as a circular lens, through which light can pass. Figure 36-10 shows the image
formed by light from a laser that was directed onto a circular aperture with a very
small diameter.This image is not a point, as geometrical optics would suggest, but
a circular disk surrounded by several progressively fainter secondary rings.
Comparison with Fig. 36-1 leaves little doubt that we are dealing with a diffrac-
tion phenomenon. Here, however, the aperture is a circle of diameter d rather
than a rectangular slit.

The (complex) analysis of such patterns shows that the first minimum for the
diffraction pattern of a circular aperture of diameter d is located by

(first minimum— circular aperture). (36-12)

The angle u here is the angle from the central axis to any point on that (circular)
minimum. Compare this with Eq. 36-1,

(first minimum— single slit), (36-13)

which locates the first minimum for a long narrow slit of width a.The main differ-
ence is the factor 1.22, which enters because of the circular shape of the aperture.

Resolvability
The fact that lens images are diffraction patterns is important when we wish to
resolve (distinguish) two distant point objects whose angular separation is small.
Figure 36-11 shows, in three different cases, the visual appearance and corre-
sponding intensity pattern for two distant point objects (stars, say) with small

sin u �
l

a

sin u � 1.22
l

d

Courtesy Jearl Walker

Figure 36-10 The diffraction pattern of a cir-
cular aperture. Note the central maximum
and the circular secondary maxima.The
figure has been overexposed to bring out
these secondary maxima, which are much
less intense than the central maximum.

Figure 36-11 At the top, the images of
two point sources (stars) formed by a
converging lens.At the bottom, repre-
sentations of the image intensities. In
(a) the angular separation of the
sources is too small for them to be 
distinguished, in (b) they can be mar-
ginally distinguished,and in (c) they are
clearly distinguished.Rayleigh’s crite-
rion is satisfied in (b), with the central
maximum of one diffraction pattern
coinciding with the first minimum of
the other.

(a) (c)(b)
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Maximilien Luce, The Seine at Herblay, 1890. Musée d’Orsay, Paris, France. Photo by Erich Lessing/Art Resource

Figure 36-12 The pointillistic painting The
Seine at Herblay by Maximilien Luce con-
sists of thousands of colored dots.With the
viewer very close to the canvas, the dots
and their true colors are visible.At normal
viewing distances, the dots are irresolvable
and thus blend.

angular separation. In Figure 36-11a, the objects are not resolved because of
diffraction; that is, their diffraction patterns (mainly their central maxima) overlap
so much that the two objects cannot be distinguished from a single point object. In
Fig. 36-11b the objects are barely resolved, and in Fig. 36-11c they are fully resolved.

In Fig. 36-11b the angular separation of the two point sources is such that the
central maximum of the diffraction pattern of one source is centered on the first
minimum of the diffraction pattern of the other, a condition called Rayleigh’s
criterion for resolvability. From Eq. 36-12, two objects that are barely resolvable
by this criterion must have an angular separation uR of

Since the angles are small, we can replace sin uR with uR expressed in radians:

(Rayleigh’s criterion). (36-14)

Human Vision. Applying Rayleigh’s criterion for resolvability to human
vision is only an approximation because visual resolvability depends on many fac-
tors, such as the relative brightness of the sources and their surroundings, turbu-
lence in the air between the sources and the observer, and the functioning of the
observer’s visual system. Experimental results show that the least angular separa-
tion that can actually be resolved by a person is generally somewhat greater than
the value given by Eq. 36-14. However, for calculations here, we shall take Eq. 36-
14 as being a precise criterion: If the angular separation u between the sources is
greater than uR, we can visually resolve the sources; if it is less, we cannot.

Pointillism. Rayleigh’s criterion can explain the arresting illusions of
color in the style of painting known as pointillism (Fig. 36-12). In this style, a
painting is made not with brush strokes in the usual sense but rather with a
myriad of small colored dots. One fascinating aspect of a pointillistic painting is
that when you change your distance from it, the colors shift in subtle, almost
subconscious ways. This color shifting has to do with whether you can resolve
the colored dots. When you stand close enough to the painting, the angular
separations u of adjacent dots are greater than uR and thus the dots can be seen
individually. Their colors are the true colors of the paints used. However, when

uR � 1.22
l

d

uR � sin�1 1.22l

d
.



you stand far enough from the painting, the angular separations u are less than
uR and the dots cannot be seen individually. The resulting blend of colors
coming into your eye from any group of dots can then cause your brain to
“make up” a color for that group — a color that may not actually exist in the
group. In this way, a pointillistic painter uses your visual system to create the
colors of the art.

When we wish to use a lens instead of our visual system to resolve objects of
small angular separation, it is desirable to make the diffraction pattern as small as
possible. According to Eq. 36-14, this can be done either by increasing the lens
diameter or by using light of a shorter wavelength. For this reason ultraviolet
light is often used with microscopes because its wavelength is shorter than a visi-
ble light wavelength.

109336-3 DIFFRACTION BY A CIRCULAR APERTURE

Checkpoint 4
Suppose that you can barely resolve two red dots because of diffraction by the
pupil of your eye. If we increase the general illumination around you so that the
pupil decreases in diameter, does the resolvability of the dots improve or diminish?
Consider only diffraction. (You might experiment to check your answer.)

Rayleigh’s criterion:

(36-15)

Calculations: Figure 36-13b shows, from the side, the
angular separation u of the dots, their center-to-center
separation D, and your distance L from them. Because
D/L is small, angle u is also small and we can make the
approximation

(36-16)

Setting u of Eq. 36-16 equal to uR of Eq. 36-15 and solv-
ing for L, we then have

(36-17)

Equation 36-17 tells us that L is larger for smaller l.Thus, as
you move away from the painting, adjacent red dots (long
wavelengths) become indistinguishable before adjacent
blue dots do.To find the least distance L at which no colored
dots are distinguishable, we substitute l� 400 nm (blue or
violet light) into Eq. 36-17:

(Answer)

At this or a greater distance, the color you perceive at
any given spot on the painting is a blended color that may
not actually exist there.

L �
(2.0 � 10�3 m)(1.5 � 10�3 m)

(1.22)(400 � 10�9 m)
� 6.1 m.

L �
Dd

1.22l
.

u �
D
L
.

uR � 1.22
l

d
.

Sample Problem 36.03 Pointillistic paintings use the diffraction of your eye

Figure 36-13a is a representation of the colored dots on a
pointillistic painting. Assume that the average center-
to-center separation of the dots is D � 2.0 mm. Also assume
that the diameter of the pupil of your eye is d� 1.5 mm and
that the least angular separation between dots you can 
resolve is set only by Rayleigh’s criterion. What is the least
viewing distance from which you cannot distinguish any
dots on the painting?

KEY IDEA

Consider any two adjacent dots that you can distinguish
when you are close to the painting. As you move away, you
continue to distinguish the dots until their angular separa-
tion u (in your view) has decreased to the angle given by

D
D

θ 

Dot
Observer

L

(a)

(b)

Figure 36-13 (a) Representation of some dots on a pointillistic paint-
ing, showing an average center-to-center separation D. (b) The
arrangement of separation D between two dots, their angular
separation u, and the viewing distance L.

Additional examples, video, and practice available at WileyPLUS
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Additional examples, video, and practice available at WileyPLUS

36-4 DIFFRACTION BY A DOUBLE SLIT

After reading this module, you should be able to . . .

36.18 In a sketch of a double-slit experiment, explain
how the diffraction through each slit modifies the two-slit
interference pattern, and identify the diffraction envelope,
the central peak, and the side peaks of that envelope.

36.19 For a given point in a double-slit diffraction pattern,
calculate the intensity I in terms of the intensity Im at the
center of the pattern.

36.20 In the intensity equation for a double-slit diffraction

pattern, identify what part corresponds to the interference
between the two slits and what part corresponds to the
diffraction by each slit.

36.21 For double-slit diffraction, apply the relationship between
the ratio d/a and the locations of the diffraction minima in the
single-slit diffraction pattern, and then count the number of
two-slit maxima that are contained in the central peak and in
the side peaks of the diffraction envelope.

Learning Objectives

●Waves passing through two slits produce a combination of
double-slit interference and diffraction by each slit.

● For identical slits with width a and center-to-center separation d,
the intensity in the pattern varies with the angle u from the central
axis as

(double slit),I(u) � Im(cos2 b) � sin a

a �
2

Key Ideas
where Im is the intensity at the center of the pattern,

and a � � pa
l � sinu.

b � � pd
l � sinu,

Sample Problem 36.04 Rayleigh’s criterion for resolving two distant objects

A circular converging lens, with diameter d 32 mm and focal
length f� 24 cm,forms images of distant point objects in the fo-
cal plane of the lens.The wavelength is l� 550 nm.

(a) Considering diffraction by the lens, what angular separa-
tion must two distant point objects have to satisfy
Rayleigh’s criterion?

KEY IDEA

Figure 36-14 shows two distant point objects P1 and P2, the
lens, and a viewing screen in the focal plane of the lens. It
also shows, on the right, plots of light intensity I versus
position on the screen for the central maxima of the images
formed by the lens. Note that the angular separation uo of
the objects equals the angular separation ui of the images.
Thus, if the images are to satisfy Rayleigh’s criterion, these
separations must be given by Eq. 36-14 (for small angles).

Calculations: From Eq. 36-14, we obtain 

(Answer)

Each central maximum in the two intensity curves of Fig.
36-14 is centered on the first minimum of the other curve.

�
(1.22)(550 � 10�9 m)

32 � 10�3 m
� 2.1 � 10�5 rad.

 uo � ui � uR � 1.22
l

d

�

Figure 36-14 Light from two distant point objects P1 and P2 passes
through a converging lens and forms images on a viewing screen in
the focal plane of the lens. Only one representative ray from each
object is shown.The images are not points but diffraction patterns,
with intensities approximately as plotted at the right.

__
2

Focal-plane
screen

I

P1

P2
θ o__
2

θ o__
2 θ i

__
2
θ i

f

∆ x

(b) What is the separation x of the centers of the images in
the focal plane? (That is, what is the separation of the cen-
tral peaks in the two intensity-versus-position curves?)

Calculations: From either triangle between the lens and
the screen in Fig. 36-14, we see that tan ui/2 � �x/2f.
Rearranging this equation and making the approximation
tan u � u, we find

�x � fui, (36-18)

where ui is in radian measure.We then find

�x� (0.24 m)(2.1 � 10�5 rad)� 5.0 mm. (Answer)

�



Diffraction by a Double Slit
In the double-slit experiments of Chapter 35, we implicitly assumed that the slits
were much narrower than the wavelength of the light illuminating them; that is,
a � l. For such narrow slits, the central maximum of the diffraction pattern of
either slit covers the entire viewing screen. Moreover, the interference of light
from the two slits produces bright fringes with approximately the same intensity
(Fig. 35-12).

In practice with visible light, however, the condition a � l is often not met.
For relatively wide slits, the interference of light from two slits produces bright
fringes that do not all have the same intensity. That is, the intensities of the
fringes produced by double-slit interference (as discussed in Chapter 35) are
modified by diffraction of the light passing through each slit (as discussed in
this chapter).

Plots. As an example, the intensity plot of Fig. 36-15a suggests the double-
slit interference pattern that would occur if the slits were infinitely narrow (and
thus a� l); all the bright interference fringes would have the same intensity. The
intensity plot of Fig. 36-15b is that for diffraction by a single actual slit; the dif-
fraction pattern has a broad central maximum and weaker secondary maxima at
�17�. The plot of Fig. 36-15c suggests the interference pattern for two actual slits.
That plot was constructed by using the curve of Fig. 36-15b as an envelope on the
intensity plot in Fig. 36-15a. The positions of the fringes are not changed; only the
intensities are affected.
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05101520 5 10 15 20
(degrees)θ

05101520 5 10 15 20
(degrees)θ

(a)

05101520 5 10 15 20
(degrees)θ

(b)

(c)

Relative intensity

Relative intensity

Relative intensity

This diffraction minimum
eliminates some of the
double-slit bright fringes.Figure 36-15 (a) The intensity plot to be expected in a dou-

ble-slit interference experiment with vanishingly narrow
slits. (b) The intensity plot for diffraction by a typical slit
of width a (not vanishingly narrow). (c) The intensity
plot to be expected for two slits of width a.The curve of
(b) acts as an envelope, limiting the intensity of the dou-
ble-slit fringes in (a). Note that the first minima of the
diffraction pattern of (b) eliminate the double-slit
fringes that would occur near 12° in (c).



Photos. Figure 36-16a shows an actual pattern in which both double-slit
interference and diffraction are evident. If one slit is covered, the single-slit
diffraction pattern of Fig. 36-16b results. Note the correspondence between
Figs. 36-16a and 36-15c, and between Figs. 36-16b and 36-15b. In comparing
these figures, bear in mind that Fig. 36-16 has been deliberately overexposed to
bring out the faint secondary maxima and that several secondary maxima
(rather than one) are shown.

Intensity. With diffraction effects taken into account, the intensity of a double-
slit interference pattern is given by

(double slit), (36-19)

in which (36-20)

and (36-21)

Here d is the distance between the centers of the slits and a is the slit width. Note
carefully that the right side of Eq. 36-19 is the product of Im and two factors. (1) The
interference factor cos2 b is due to the interference between two slits with slit separa-
tion d (as given by Eqs. 35-22 and 35-23). (2) The diffraction factor [(sin a)/a]2 is due
to diffraction by a single slit of width a (as given by Eqs.36-5 and 36-6).

Let us check these factors. If we let a : 0 in Eq. 36-21, for example, then
a: 0 and (sin a)/a : 1. Equation 36-19 then reduces, as it must, to an equation
describing the interference pattern for a pair of vanishingly narrow slits with slit
separation d. Similarly, putting d � 0 in Eq. 36-20 is equivalent physically to caus-
ing the two slits to merge into a single slit of width a. Then Eq. 36-20 yields b � 0
and cos2 b � 1. In this case Eq. 36-19 reduces, as it must, to an equation describing
the diffraction pattern for a single slit of width a.

Language. The double-slit pattern described by Eq. 36-19 and displayed in Fig.
36-16a combines interference and diffraction in an intimate way. Both are superpo-
sition effects, in that they result from the combining of waves with different phases
at a given point. If the combining waves originate from a small number of elemen-
tary coherent sources— as in a double-slit experiment with a � l— we call the

a �
pa
l

 sin u.

b �
pd
l

 sin u

I(u) � Im(cos2 b) � sin a

a �
2
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(a)

(b)

Courtesy Jearl Walker

Figure 36-16 (a) Interference fringes for an
actual double-slit system; compare with
Fig. 36-15c. (b) The diffraction pattern of a
single slit; compare with Fig. 36-15b.



process interference. If the combining waves originate in a single wavefront—as in
a single-slit experiment—we call the process diffraction. This distinction between
interference and diffraction (which is somewhat arbitrary and not always adhered
to) is a convenient one, but we should not forget that both are superposition
effects and usually both are present simultaneously (as in Fig. 36-16a).
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envelope. The bright fringes to one side of the central bright
fringe are shown in Fig. 36-17.

(b) How many bright fringes are within either of the first
side peaks of the diffraction envelope?

KEY IDEA

The outer limits of the first side diffraction peaks are the
second diffraction minima, each of which is at the angle u
given by a sin u �m1l with m1� 2:

a sin u � 2l. (36-24)

Calculation: Dividing Eq. 36-23 by Eq. 36-24, we find

This tells us that the second diffraction minimum occurs just
before the bright interference fringe for m2� 10 in Eq. 36-23.
Within either first side diffraction peak we have the fringes
from m2� 5 to m2 � 9, for a total of five bright fringes of
the double-slit interference pattern (shown in the inset of
Fig. 36-17). However, if the m2� 5 bright fringe, which is al-
most eliminated by the first diffraction minimum, is consid-
ered too dim to count, then only four bright fringes are in
the first side diffraction peak.

m2 �
2d
a
�

(2)(19.44 mm)
4.050 mm

� 9.6.

Sample Problem 36.05 Double-slit experiment with diffraction of each slit included

In a double-slit experiment, the wavelength l of the light
source is 405 nm, the slit separation d is 19.44 mm, and the
slit width a is 4.050 mm. Consider the interference of the
light from the two slits and also the diffraction of the light
through each slit.

(a) How many bright interference fringes are within the
central peak of the diffraction envelope?

KEY IDEAS

We first analyze the two basic mechanisms responsible for
the optical pattern produced in the experiment:

1. Single-slit diffraction: The limits of the central peak are
the first minima in the diffraction pattern due to either slit
individually. (See Fig. 36-15.) The angular locations of
those minima are given by Eq. 36-3 (a sin u�ml). Here
let us rewrite this equation as a sin u�m1l, with the
subscript 1 referring to the one-slit diffraction. For the first
minima in the diffraction pattern, we substitute m1� 1,
obtaining

a sin u� l. (36-22)

2. Double-slit interference: The angular locations of the
bright fringes of the double-slit interference pattern are
given by Eq. 35-14, which we can write as

d sin u� m2l, for m2� 0, 1, 2, . . . . (36-23)

Here the subscript 2 refers to the double-slit interference.

Calculations: We can locate the first diffraction minimum
within the double-slit fringe pattern by dividing Eq. 36-23 by
Eq. 36-22 and solving for m2. By doing so and then substitut-
ing the given data, we obtain

This tells us that the bright interference fringe for m2 � 4
fits into the central peak of the one-slit diffraction pattern,
but the fringe for m2� 5 does not fit. Within the central dif-
fraction peak we have the central bright fringe (m2� 0),
and four bright fringes (up to m2� 4) on each side of it.
Thus, a total of nine bright fringes of the double-slit interfer-
ence pattern are within the central peak of the diffraction

m2 �
d
a
�

19.44 mm
4.050 mm

� 4.8.

Additional examples, video, and practice available at WileyPLUS

Figure 36-17 One side of the intensity plot for a two-slit interference
experiment.The inset shows (vertically expanded) the plot within
the first and second side peaks of the diffraction envelope.
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Diffraction Gratings
One of the most useful tools in the study of light and of objects that emit and
absorb light is the diffraction grating. This device is somewhat like the double-slit
arrangement of Fig. 35-10 but has a much greater number N of slits, often called
rulings, perhaps as many as several thousand per millimeter. An idealized grating
consisting of only five slits is represented in Fig. 36-18. When monochromatic
light is sent through the slits, it forms narrow interference fringes that can be
analyzed to determine the wavelength of the light. (Diffraction gratings can also
be opaque surfaces with narrow parallel grooves arranged like the slits in
Fig. 36-18. Light then scatters back from the grooves to form interference fringes
rather than being transmitted through open slits.)

Pattern. With monochromatic light incident on a diffraction grating, if we
gradually increase the number of slits from two to a large number N, the intensity
plot changes from the typical double-slit plot of Fig. 36-15c to a much more compli-
cated one and then eventually to a simple graph like that shown in Fig. 36-19a.The
pattern you would see on a viewing screen using monochromatic red light from,
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36-5 DIFFRACTION GRATINGS 

After reading this module, you should be able to . . .

36.22 Describe a diffraction grating and sketch the interfer-
ence pattern it produces in monochromatic light.

36.23 Distinguish the interference patterns of a diffraction
grating and a double-slit arrangement.

36.24 Identify the terms line and order number.
36.25 For a diffraction grating, relate order number m

to the path length difference of rays that give a bright
fringe.

36.26 For a diffraction grating, relate the slit separation d, the
angle u to a bright fringe in the pattern, the order number

m of that fringe, and the wavelength l of the light.
36.27 Identify the reason why there is a maximum order

number for a given diffraction grating.
36.28 Explain the derivation of the equation for a line’s 

half-width in a diffraction-grating pattern.
36.29 Calculate the half-width of a line at a given angle in a

diffraction-grating pattern.
36.30 Explain the advantage of increasing the number of slits

in a diffraction grating.
36.31 Explain how a grating spectroscope works.

Learning Objectives

● A diffraction grating is a series of “slits” used to separate
an incident wave into its component wavelengths by separat-
ing and displaying their diffraction maxima. Diffraction by N
(multiple) slits results in maxima (lines) at angles u such that

d sin u�ml, for m� 0, 1, 2, . . . (maxima).

Key Idea

d

C

P

λ 

Figure 36-18 An idealized diffraction grating,
consisting of only five rulings, that produces
an interference pattern on a distant viewing
screen C.

θ 

m = 0

Intensity

1 2 3123

0

(a)

(b)

1m = 0 2 3123

Figure 36-19 (a) The intensity plot produced 
by a diffraction grating with a great many
rulings consists of narrow peaks, here labeled
with their order numbers m. (b) The
corresponding bright fringes seen on the
screen are called lines and are here also 
labeled with order numbers m.

● A line’s half-width is the angle from its center to the point
where it disappears into the darkness and is given by

(half-width).�uhw �
l

Nd cos u
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say, a helium–neon laser is shown in Fig. 36-19b.The maxima are now very narrow
(and so are called lines); they are separated by relatively wide dark regions.

Equation. We use a familiar procedure to find the locations of the bright lines
on the viewing screen. We first assume that the screen is far enough from the grat-
ing so that the rays reaching a particular point P on the screen are approximately
parallel when they leave the grating (Fig. 36-20). Then we apply to each pair of
adjacent rulings the same reasoning we used for double-slit interference.The sep-
aration d between rulings is called the grating spacing. (If N rulings occupy a total
width w, then d � w/N.) The path length difference between adjacent rays is
again d sin u (Fig. 36-20), where u is the angle from the central axis of the grating
(and of the diffraction pattern) to point P. A line will be located at P if the path
length difference between adjacent rays is an integer number of wavelengths:

d sin u�ml, for m� 0, 1, 2, . . . (maxima —lines), (36-25)

where l is the wavelength of the light. Each integer m represents a different line;
hence these integers can be used to label the lines, as in Fig. 36-19. The integers
are then called the order numbers, and the lines are called the zeroth-order line
(the central line, with m � 0), the first-order line (m� 1), the second-order line
(m � 2), and so on.

Determining Wavelength. If we rewrite Eq. 36-25 as u � sin�1(ml/d), we
see that, for a given diffraction grating, the angle from the central axis to any
line (say, the third-order line) depends on the wavelength of the light being
used. Thus, when light of an unknown wavelength is sent through a diffraction
grating, measurements of the angles to the higher-order lines can be used in
Eq. 36-25 to determine the wavelength. Even light of several unknown wave-
lengths can be distinguished and identified in this way. We cannot do that with
the double-slit arrangement of Module 35-2, even though the same equation
and wavelength dependence apply there. In double-slit interference, the bright
fringes due to different wavelengths overlap too much to be distinguished.

Width of the Lines
A grating’s ability to resolve (separate) lines of different wavelengths depends on
the width of the lines. We shall here derive an expression for the half-width of
the central line (the line for which m � 0) and then state an expression for the
half-widths of the higher-order lines. We define the half-width of the central line
as being the angle �uhw from the center of the line at u� 0 outward to where
the line effectively ends and darkness effectively begins with the first minimum
(Fig. 36-21). At such a minimum, the N rays from the N slits of the grating cancel
one another. (The actual width of the central line is, of course, 2(�uhw), but line
widths are usually compared via half-widths.)

In Module 36-1 we were also concerned with the cancellation of a great many
rays, there due to diffraction through a single slit. We obtained Eq. 36-3, which,
because of the similarity of the two situations, we can use to find the first
minimum here. It tells us that the first minimum occurs where the path length
difference between the top and bottom rays equals l. For single-slit diffraction,
this difference is a sin u. For a grating of N rulings, each separated from the next
by distance d, the distance between the top and bottom rulings is Nd (Fig. 36-22),
and so the path length difference between the top and bottom rays here is
Nd sin �uhw.Thus, the first minimum occurs where

Nd sin �uhw � l. (36-26)

Because �uhw is small, sin �uhw � �uhw (in radian measure). Substituting this in
Eq. 36-26 gives the half-width of the central line as

(half-width of central line). (36-27)�uhw �
l

Nd

Figure 36-20 The rays from the rulings in a
diffraction grating to a distant point P are
approximately parallel.The path length dif-
ference between each two adjacent rays is 
d sin u, where u is measured as shown. (The
rulings extend into and out of the page.)

θ
θ

θ

θ

θ

d

To point P
on viewing

screen

Path length
difference

between adjacent rays

This path length difference
between adjacent rays
determines the interference.

Figure 36-21 The half-width of the cen-
tral line is measured from the center of that
line to the adjacent minimum on a plot of 
I versus u like Fig. 36-19a.

�uhw

∆ θ 

Intensity

hw

0°
θ 

∆ θ hw

∆ θ hw

Path length
difference

Nd

To first
minimum

Top ray

Bottom ray

Figure 36-22 The top and bottom rulings of
a diffraction grating of N rulings are
separated by Nd.The top and bottom rays
passing through these rulings have a path
length difference of Nd sin �uhw, where
�uhw is the angle to the first minimum.
(The angle is here greatly exaggerated
for clarity.)
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0° 10° 20° 30° 40° 80°70°60°50°

m = 4m = 1 m = 2
m = 0

This is the center
of the pattern.

The higher orders are
spread out more in angle.

Figure 36-24 The zeroth, first, second, and fourth orders of the visible emission lines from
hydrogen.Note that the lines are farther apart at greater angles. (They are also dimmer
and wider, although that is not shown here.)

We state without proof that the half-width of any other line depends on its loca-
tion relative to the central axis and is

(half-width of line at u). (36-28)

Note that for light of a given wavelength l and a given ruling separation d, the
widths of the lines decrease with an increase in the number N of rulings. Thus, of
two diffraction gratings, the grating with the larger value of N is better able to 
distinguish between wavelengths because its diffraction lines are narrower and so
produce less overlap.

Grating Spectroscope
Diffraction gratings are widely used to determine the wavelengths that are emit-
ted by sources of light ranging from lamps to stars. Figure 36-23 shows a simple
grating spectroscope in which a grating is used for this purpose. Light from
source S is focused by lens L1 on a vertical slit S1 placed in the focal plane of lens
L2. The light emerging from tube C (called a collimator) is a plane wave and is
incident perpendicularly on grating G, where it is diffracted into a diffraction
pattern, with the m � 0 order diffracted at angle u � 0 along the central axis of
the grating.

We can view the diffraction pattern that would appear on a viewing screen at
any angle u simply by orienting telescope T in Fig. 36-23 to that angle. Lens L3 of
the telescope then focuses the light diffracted at angle u (and at slightly smaller
and larger angles) onto a focal plane FF� within the telescope. When we look
through eyepiece E, we see a magnified view of this focused image.

By changing the angle u of the telescope, we can examine the entire diffraction
pattern. For any order number other than m� 0, the original light is spread out ac-
cording to wavelength (or color) so that we can determine, with Eq. 36-25, just what
wavelengths are being emitted by the source. If the source emits discrete wave-
lengths, what we see as we rotate the telescope horizontally through the angles
corresponding to an order m is a vertical line of color for each wavelength, with the
shorter-wavelength line at a smaller angle u than the longer-wavelength line.

Hydrogen. For example, the light emitted by a hydrogen lamp, which con-
tains hydrogen gas, has four discrete wavelengths in the visible range. If our eyes
intercept this light directly, it appears to be white. If, instead, we view it through a
grating spectroscope, we can distinguish, in several orders, the lines of the four
colors corresponding to these visible wavelengths. (Such lines are called emission
lines.) Four orders are represented in Fig. 36-24. In the central order (m � 0), the
lines corresponding to all four wavelengths are superimposed, giving a single
white line at u � 0.The colors are separated in the higher orders.

The third order is not shown in Fig. 36-24 for the sake of clarity; it actually
overlaps the second and fourth orders. The fourth-order red line is missing
because it is not formed by the grating used here. That is, when we attempt to

�uhw �
l

Nd cos u

Figure 36-23 A simple type of grating spec-
troscope used to analyze the wavelengths
of light emitted by source S.
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solve Eq. 36-25 for the angle u for the red wavelength when m � 4, we find that
sin u is greater than unity, which is not possible.The fourth order is then said to be
incomplete for this grating; it might not be incomplete for a grating with greater
spacing d, which will spread the lines less than in Fig. 36-24. Figure 36-25 is a
photograph of the visible emission lines produced by cadmium.

Department of Physics, Imperial College/Science Photo Library/
Photo Researchers, Inc.

Figure 36-25 The visible
emission lines of cadmium,
as seen through a grating
spectroscope.

Checkpoint 5
The figure shows lines of different orders produced by
a diffraction grating in monochromatic red light. (a) Is
the center of the pattern to the left or right? (b) In
monochromatic green light, are the half-widths of the lines produced in the same or-
ders greater than, less than, or the same as the half-widths of the lines shown?

36-6 GRATINGS: DISPERSION AND RESOLVING POWER

After reading this module, you should be able to . . .

36.32 Identify dispersion as the spreading apart of 
the diffraction lines associated with different 
wavelengths.

36.33 Apply the relationships between dispersion D,
wavelength difference �l, angular separation �u, slit
separation d, order number m, and the angle u correspon-
ding to the order number.

36.34 Identify the effect on the dispersion of a diffraction

grating if the slit separation is varied.
36.35 Identify that for us to resolve lines, a diffraction grating

must make them distinguishable.
36.36 Apply the relationship between resolving power R,

wavelength difference �l, average wavelength lavg,
number of rulings N, and order number m.

36.37 Identify the effect on the resolving power R if the
number of slits N is increased.

Learning Objectives

● The dispersion D of a diffraction grating is a measure of
the angular separation �u of the lines it produces for two
wavelengths differing by �l. For order number m, at angle u,
the dispersion is given by

(dispersion).D �
�u

�l
�

m
d cos u

Key Ideas
● The resolving power R of a diffraction grating is a measure of
its ability to make the emission lines of two close wavelengths
distinguishable. For two wavelengths differing by �l and with
an average value of lavg, the resolving power is given by

(resolving power).R �
lavg

�l
� Nm

Gratings: Dispersion and Resolving Power
Dispersion
To be useful in distinguishing wavelengths that are close to each other (as in a
grating spectroscope), a grating must spread apart the diffraction lines associated
with the various wavelengths.This spreading, called dispersion, is defined as

(dispersion defined). (36-29)D �
�u

�l
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Here �u is the angular separation of two lines whose wavelengths differ by �l.
The greater D is, the greater is the distance between two emission lines whose
wavelengths differ by �l.We show below that the dispersion of a grating at angle
u is given by

(dispersion of a grating). (36-30)

Thus, to achieve higher dispersion we must use a grating of smaller grating spac-
ing d and work in a higher-order m. Note that the dispersion does not depend on
the number of rulings N in the grating. The SI unit for D is the degree per meter
or the radian per meter.

Resolving Power
To resolve lines whose wavelengths are close together (that is, to make the lines
distinguishable), the line should also be as narrow as possible. Expressed other-
wise, the grating should have a high resolving power R, defined as

(resolving power defined). (36-31)

Here lavg is the mean wavelength of two emission lines that can barely be recog-
nized as separate, and �l is the wavelength difference between them.The greater
R is, the closer two emission lines can be and still be resolved. We shall show
below that the resolving power of a grating is given by the simple expression

R� Nm (resolving power of a grating). (36-32)

To achieve high resolving power, we must use many rulings (large N).

Proof of Eq. 36-30
Let us start with Eq. 36-25, the expression for the locations of the lines in the dif-
fraction pattern of a grating:

d sin u � ml.

Let us regard u and l as variables and take differentials of this equation. We find

d(cos u) du � m dl.

For small enough angles, we can write these differentials as small differences,
obtaining

d(cos u) �u�m �l (36-33)

or

The ratio on the left is simply D (see Eq. 36-29), and so we have indeed derived
Eq. 36-30.

Proof of Eq. 36-32
We start with Eq. 36-33, which was derived from Eq. 36-25, the expression for the
locations of the lines in the diffraction pattern formed by a grating. Here �l is the
small wavelength difference between two waves that are diffracted by the grat-
ing, and �u is the angular separation between them in the diffraction pattern. If
�u is to be the smallest angle that will permit the two lines to be resolved, it must
(by Rayleigh’s criterion) be equal to the half-width of each line, which is given by
Eq. 36-28:

�uhw �
l

Nd cos u
.

�u

�l
�

m
d cos u

.

R �
lavg

�l

D �
m

d cos u

Kristen Brochmann/Fundamental Photographs

The fine rulings, each 0.5 mm wide, on a
compact disc function as a diffraction grat-
ing. When a small source of white light
illuminates a disc, the diffracted light forms
colored “lanes” that are the composite of the
diffraction patterns from the rulings.
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If we substitute �uhw as given here for �u in Eq. 36-33, we find that

from which it readily follows that

This is Eq. 36-32, which we set out to derive.

Dispersion and Resolving Power Compared
The resolving power of a grating must not be confused with its dispersion.
Table 36-1 shows the characteristics of three gratings, all illuminated with light of
wavelength l � 589 nm, whose diffracted light is viewed in the first order (m � 1
in Eq. 36-25). You should verify that the values of D and R as given in the table
can be calculated with Eqs. 36-30 and 36-32, respectively. (In the calculations for
D, you will need to convert radians per meter to degrees per micrometer.)

For the conditions noted in Table 36-1, gratings A and B have the same
dispersion D and A and C have the same resolving power R.

Figure 36-26 shows the intensity patterns (also called line shapes) that would
be produced by these gratings for two lines of wavelengths l1 and l2, in the
vicinity of l � 589 nm. Grating B, with the higher resolving power, produces
narrower lines and thus is capable of distinguishing lines that are much closer
together in wavelength than those in the figure. Grating C, with the higher dis-
persion, produces the greater angular separation between the lines.

R �
l

�l
� Nm.

l

N
� m �l,

Table 36-1 Three Gratingsa

Grating N d (nm) u D (�/mm) R

A 10 000 2540 13.4° 23.2 10 000
B 20 000 2540 13.4° 23.2 20 000
C 10 000 1360 25.5° 46.3 10 000

aData are for l � 589 nm and m � 1.
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Figure 36-26 The intensity patterns for light
of two wavelengths sent through the grat-
ings of Table 36-1. Grating B has the high-
est resolving power, and grating C the
highest dispersion.

Calculations: The grating spacing d is

The first-order maximum corresponds to m 1. Substituting
these values for d and m into Eq. 36-25 leads to

(Answer)

(b) Using the dispersion of the grating, calculate the angular
separation between the two lines in the first order.

� 16.99� � 17.0�.

u � sin�1 ml

d
� sin�1 (1)(589.00 nm)

2016 nm

�

� 2.016 � 10�6 m � 2016 nm.

d �
w
N
�

25.4 � 10�3 m
1.26 � 104

Sample Problem 36.06 Dispersion and resolving power of a diffraction grating

A diffraction grating has 1.26 104 rulings uniformly spaced�

over width w� 25.4 mm. It is illuminated at normal inci-
dence by yellow light from a sodium vapor lamp. This light
contains two closely spaced emission lines (known as the
sodium doublet) of wavelengths 589.00 nm and 589.59 nm.

(a) At what angle does the first-order maximum occur (on
either side of the center of the diffraction pattern) for the
wavelength of 589.00 nm?

KEY IDEA

The maxima produced by the diffraction grating can be deter-
mined with Eq.36-25 (d sin u�ml).
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X-Ray Diffraction
X rays are electromagnetic radiation whose wavelengths are of the order of 1 Å
(� 10�10 m). Compare this with a wavelength of 550 nm (� 5.5� 10�7 m) at the

● If x rays are directed toward a crystal structure, they
undergo Bragg scattering, which is easiest to visualize if
the crystal atoms are considered to be in parallel planes.

● For x rays of wavelength l scattering from crystal planes

Key Ideas
with separation d, the angles u at which the scattered
intensity is maximum are given by

2d sin u�ml, for m� 1, 2, 3, . . . (Bragg’s law).

KEY IDEAS

(1) The angular separation �u between the two lines in the
first order depends on their wavelength difference �l and
the dispersion D of the grating, according to Eq. 36-29 
(D � �u/�l). (2) The dispersion D depends on the angle u
at which it is to be evaluated.

Calculations: We can assume that, in the first order, the
two sodium lines occur close enough to each other for us to
evaluate D at the angle u 16.99° we found in part (a) for
one of those lines.Then Eq. 36-30 gives the dispersion as

From Eq. 36-29 and with �l in nanometers, we then have

(Answer)

You can show that this result depends on the grating spacing
d but not on the number of rulings there are in the grating.

� 3.06 � 10�4 rad � 0.0175�.

�u� D�l� (5.187 � 10�4 rad/nm)(589.59 � 589.00)

� 5.187 � 10�4 rad/nm.

D �
m

d cos u
�

1
(2016 nm)(cos 16.99�)

�

(c) What is the least number of rulings a grating can have
and still be able to resolve the sodium doublet in the first
order?

KEY IDEAS

(1) The resolving power of a grating in any order m is physi-
cally set by the number of rulings N in the grating 
according to Eq. 36-32 (R� Nm). (2) The smallest wave-
length difference �l that can be resolved depends on the
average wavelength involved and on the resolving power R
of the grating, according to Eq. 36-31 (R � lavg/�l).

Calculation: For the sodium doublet to be barely resolved,
�l must be their wavelength separation of 0.59 nm, and lavg

must be their average wavelength of 589.30 nm. Thus, we
find that the smallest number of rulings for a grating to 
resolve the sodium doublet is

(Answer)�
589.30 nm

(1)(0.59 nm)
� 999 rulings.

N �
R
m
�

lavg

m �l

Additional examples, video, and practice available at WileyPLUS

36-7 X-RAY DIFFRACTION

After reading this module, you should be able to . . .

36.38 Identify approximately where x rays are located in the
electromagnetic spectrum.

36.39 Define a unit cell.
36.40 Define reflecting planes (or crystal planes) and

interplanar spacing.
36.41 Sketch two rays that scatter from adjacent planes,

showing the angle that is used in calculations.

36.42 For the intensity maxima in x-ray scattering 
by a crystal, apply the relationship between the 
interplanar spacing d, the angle u of scattering, 
the order number m, and the wavelength l of the 
x rays.

36.43 Given a drawing of a unit cell, demonstrate how an
interplanar spacing can be determined.

Learning Objectives
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Figure 36-27 X rays are generated when
electrons leaving heated filament F are
accelerated through a potential difference
V and strike a metal target T. The “win-
dow” W in the evacuated chamber C is
transparent to x rays.

V

F

WX rays

C

T
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a0

Cl–

a0

(a)

d

d θ θ

θ θ

θ θ

Incident
x rays

3 2 1

(b)

d
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Ray 2 Ray 1

θ θ

d sinθ d sinθ

The extra distance of ray 2
determines the interference.(c)

θ
θ

θ
θ

θ
θd

d

d

(d)

Figure 36-28 (a) The cubic structure of NaCl, showing the sodium and chlorine ions and
a unit cell (shaded). (b) Incident x rays undergo diffraction by the structure of (a).The
x rays are diffracted as if they were reflected by a family of parallel planes, with angles
measured relative to the planes (not relative to a normal as in optics). (c) The path length
difference between waves effectively reflected by two adjacent planes is 2d sin u. (d)
A different orientation of the incident x rays relative to the structure.A different family 
of parallel planes now effectively reflects the x rays.

center of the visible spectrum. Figure 36-27 shows that x rays are produced when
electrons escaping from a heated filament F are accelerated by a potential differ-
ence V and strike a metal target T.

A standard optical diffraction grating cannot be used to discriminate
between different wavelengths in the x-ray wavelength range. For l � 1 Å
(� 0.1 nm) and d � 3000 nm, for example, Eq. 36-25 shows that the first-order
maximum occurs at

This is too close to the central maximum to be practical. A grating with d � l is
desirable, but, because x-ray wavelengths are about equal to atomic diameters,
such gratings cannot be constructed mechanically.

In 1912, it occurred to German physicist Max von Laue that a crystalline
solid, which consists of a regular array of atoms, might form a natural three-
dimensional “diffraction grating” for x rays. The idea is that, in a crystal such as
sodium chloride (NaCl), a basic unit of atoms (called the unit cell) repeats itself
throughout the array. Figure 36-28a represents a section through a crystal of
NaCl and identifies this basic unit. The unit cell is a cube measuring a0 on
each side.

When an x-ray beam enters a crystal such as NaCl, x rays are scattered —that
is, redirected —in all directions by the crystal structure. In some directions the
scattered waves undergo destructive interference, resulting in intensity minima;
in other directions the interference is constructive, resulting in intensity maxima.
This process of scattering and interference is a form of diffraction.

Fictional Planes. Although the process of diffraction of x rays by a crystal is
complicated, the maxima turn out to be in directions as if the x rays were

u � sin�1 ml

d
� sin�1 (1)(0.1 nm)

3000 nm
� 0.0019�.
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reflected by a family of parallel reflecting planes (or crystal planes) that extend
through the atoms within the crystal and that contain regular arrays of the atoms.
(The x rays are not actually reflected; we use these fictional planes only to sim-
plify the analysis of the actual diffraction process.)

Figure 36-28b shows three reflecting planes (part of a family containing
many parallel planes) with interplanar spacing d, from which the incident rays
shown are said to reflect. Rays 1, 2, and 3 reflect from the first, second, and third
planes, respectively. At each reflection the angle of incidence and the angle of re-
flection are represented with u. Contrary to the custom in optics, these angles are
defined relative to the surface of the reflecting plane rather than a normal to that
surface. For the situation of Fig. 36-28b, the interplanar spacing happens to be
equal to the unit cell dimension a0.

Figure 36-28c shows an edge-on view of reflection from an adjacent pair of
planes. The waves of rays 1 and 2 arrive at the crystal in phase. After they are
reflected, they must again be in phase because the reflections and the reflecting
planes have been defined solely to explain the intensity maxima in the diffraction
of x rays by a crystal. Unlike light rays, the x rays do not refract upon entering the
crystal; moreover, we do not define an index of refraction for this situation. Thus,
the relative phase between the waves of rays 1 and 2 as they leave the crystal is
set solely by their path length difference. For these rays to be in phase, the path
length difference must be equal to an integer multiple of the wavelength l of
the x rays.

Diffraction Equation. By drawing the dashed perpendiculars in Fig. 36-28c,
we find that the path length difference is 2d sin u. In fact, this is true for any pair
of adjacent planes in the family of planes represented in Fig. 36-28b. Thus, we
have, as the criterion for intensity maxima for x-ray diffraction,

2d sin u � ml, for m � 1, 2, 3, . . . (Bragg’s law), (36-34)

where m is the order number of an intensity maximum. Equation 36-34 is called
Bragg’s law after British physicist W. L. Bragg, who first derived it. (He and his
father shared the 1915 Nobel Prize in physics for their use of x rays to study the
structures of crystals.) The angle of incidence and reflection in Eq. 36-34 is called
a Bragg angle.

Regardless of the angle at which x rays enter a crystal, there is always a fam-
ily of planes from which they can be said to reflect so that we can apply Bragg’s
law. In Fig. 36-28d, notice that the crystal structure has the same orientation as it
does in Fig. 36-28a, but the angle at which the beam enters the structure differs
from that shown in Fig. 36-28b.This new angle requires a new family of reflecting
planes, with a different interplanar spacing d and different Bragg angle u, in order
to explain the x-ray diffraction via Bragg’s law.

Determining a Unit Cell. Figure 36-29 shows how the interplanar spacing d
can be related to the unit cell dimension a0. For the particular family of planes
shown there, the Pythagorean theorem gives

or (36-35)

Figure 36-29 suggests how the dimensions of the unit cell can be found once the
interplanar spacing has been measured by means of x-ray diffraction.

X-ray diffraction is a powerful tool for studying both x-ray spectra and the
arrangement of atoms in crystals.To study spectra, a particular set of crystal planes,
having a known spacing d, is chosen. These planes effectively reflect different
wavelengths at different angles. A detector that can discriminate one angle from
another can then be used to determine the wavelength of radiation reaching it.The
crystal itself can be studied with a monochromatic x-ray beam, to determine not
only the spacing of various crystal planes but also the structure of the unit cell.

d �
a0

120
� 0.2236a0.

5d � 25
4a2

0,

Figure 36-29 A family of planes through the
structure of Fig. 36-28a, and a way to relate
the edge length a0 of a unit cell to the inter-
planar spacing d.
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Diffraction When waves encounter an edge, an obstacle, or an
aperture the size of which is comparable to the wavelength of the
waves, those waves spread out as they travel and, as a result,
undergo interference.This is called diffraction.

Single-Slit Diffraction Waves passing through a long narrow
slit of width a produce, on a viewing screen, a single-slit diffraction
pattern that includes a central maximum and other maxima, sepa-
rated by minima located at angles u to the central axis that satisfy

a sin u �ml, for m � 1, 2, 3, . . . (minima). (36-3)

The intensity of the diffraction pattern at any given angle u is

(36-5, 36-6)

and Im is the intensity at the center of the pattern.

Circular-Aperture Diffraction Diffraction by a circular
aperture or a lens with diameter d produces a central maximum
and concentric maxima and minima, with the first minimum at an
angle u given by

(first minimum —circular aperture). (36-12)

Rayleigh’s Criterion Rayleigh’s criterion suggests that two
objects are on the verge of resolvability if the central diffraction
maximum of one is at the first minimum of the other.Their angular
separation can then be no less than

(Rayleigh’s criterion), (36-14)

in which d is the diameter of the aperture through which the light
passes.

uR � 1.22
l

d

sin u � 1.22
l

d

I(u) � Im � sin a

a �
2

,  where a �
pa
l

 sin u

Review & Summary

Double-Slit Diffraction Waves passing through two slits,
each of width a, whose centers are a distance d apart, display dif-
fraction patterns whose intensity I at angle u is

(double slit), (36-19)

with b � (pd /l) sin u and a as for single-slit diffraction.

Diffraction Gratings A diffraction grating is a series of “slits”
used to separate an incident wave into its component wavelengths
by separating and displaying their diffraction maxima. Diffraction
by N (multiple) slits results in maxima (lines) at angles u such that

d sin u �ml, for m� 0, 1, 2, . . . (maxima), (36-25)

with the half-widths of the lines given by

(half-widths). (36-28)

The dispersion D and resolving power R are given by

(36-29, 36-30)

and
(36-31, 36-32)

X-Ray Diffraction The regular array of atoms in a crystal is a
three-dimensional diffraction grating for short-wavelength waves
such as x rays. For analysis purposes, the atoms can be visualized as
being arranged in planes with characteristic interplanar spacing d.
Diffraction maxima (due to constructive interference) occur if the
incident direction of the wave, measured from the surfaces of these
planes, and the wavelength l of the radiation satisfy Bragg’s law:

2d sin u �ml, for m� 1, 2, 3, . . . (Bragg’s law). (36-34)

R �
lavg

�l
� Nm.

D �
�u

�l
�

m
d cos u

�uhw �
l

Nd cos u

I(u) � Im(cos2 b) � sin a

a �
2

4 For three experiments, Fig. 36-31 gives
a versus angle u in one-slit diffraction using
light of wavelength 500 nm. Rank the ex-
periments according to (a) the slit widths
and (b) the total number of diffraction
minima in the pattern,greatest first.

5 Figure 36-32 shows four choices for the
rectangular opening of a source of either
sound waves or light waves.The sides have
lengths of either L or 2L, with L being 3.0
times the wavelength of the waves. Rank
the openings according to the extent of (a) left–right spreading and
(b) up–down spreading of the waves due to diffraction, greatest first.

1 You are conducting a single-slit diffraction experiment
with light of wavelength l. What appears, on a distant viewing
screen, at a point at which the top and bottom rays through
the slit have a path length difference equal to (a) 5l and
(b) 4.5l?

2 In a single-slit diffraction experiment, the top and bottom rays
through the slit arrive at a certain point on the viewing screen with
a path length difference of 4.0 wavelengths. In a phasor representa-
tion like those in Fig 36-7, how many overlapping circles does the
chain of phasors make?

3 For three experiments, Fig. 36-30 gives
the parameter b of Eq. 36-20 versus angle
u for two-slit interference using light of
wavelength 500 nm. The slit separations
in the three experiments differ. Rank the
experiments according to (a) the slit sep-
arations and (b) the total number of two-
slit interference maxima in the pattern,
greatest first.

Questions

Figure 36-30 Question 3.

0 /2
 (rad)

β 

θ 
π 

A
B

C

Figure 36-31 Question 4.

 (rad)θ 
/2π 0

α 

A
B

C

Figure 36-32 Question 5.

(1) (2) (3) (4)
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Module 36-1 Single-Slit Diffraction
•1 The distance between the first and fifth minima of a single-
slit diffraction pattern is 0.35 mm with the screen 40 cm away from
the slit, when light of wavelength 550 nm is used. (a) Find the slit
width. (b) Calculate the angle u of the first diffraction minimum.

•2 What must be the ratio of the slit width to the wavelength for a
single slit to have the first diffraction minimum at u � 45.0°?

•3 A plane wave of wavelength 590 nm is incident on a slit with a
width of a� 0.40 mm.A thin converging lens of focal length �70 cm
is placed between the slit and a viewing screen and focuses the
light on the screen. (a) How far is the screen from the lens?
(b) What is the distance on the screen from the center of the dif-
fraction pattern to the first minimum?

•4 In conventional television, signals are broadcast from towers
to home receivers. Even when a receiver is not in direct view of a

tower because of a hill or building, it can still intercept a signal if
the signal diffracts enough around the obstacle, into the obstacle’s
“shadow region.” Previously, television signals had a wavelength of
about 50 cm, but digital television signals that are transmitted
from towers have a wavelength of about 10 mm. (a) Did this
change in wavelength increase or decrease the diffraction of the
signals into the shadow regions of obstacles? Assume that a
signal passes through an opening of 5.0 m width between two
adjacent buildings. What is the angular spread of the central dif-
fraction maximum (out to the first minima) for wavelengths of
(b) 50 cm and (c) 10 mm?

•5 A single slit is illuminated by light of wavelengths la and lb,
chosen so that the first diffraction minimum of the la component
coincides with the second minimum of the lb component. (a) If 
lb� 350 nm, what is la? For what order number mb (if any) does a

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM Worked-out solution available in Student Solutions Manual      

• – ••• Number of dots indicates level of problem difficulty

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

WWW Worked-out solution is at

ILW Interactive solution is at 
http://www.wiley.com/college/halliday

Problems

has the greater number of rulings? (b) Figure 36-34b shows lines of
two orders produced by a single diffraction grating using light of
two wavelengths, both in the red region of the spectrum. Which
lines, the left pair or right pair, are in the order with greater m? Is
the center of the diffraction pattern located to the left or to the
right in (c) Fig. 36-34a and (d) Fig. 36-34b?

6 Light of frequency f illuminating a long narrow slit produces a
diffraction pattern. (a) If we switch to light of frequency 1.3f, does
the pattern expand away from the center or contract toward the
center? (b) Does the pattern expand or contract if, instead, we sub-
merge the equipment in clear corn syrup?

7 At night many people see rings (called entoptic halos) surround-
ing bright outdoor lamps in otherwise dark surroundings. The rings
are the first of the side maxima in diffraction patterns produced by
structures that are thought to be within the cornea (or possibly the
lens) of the observer’s eye. (The central maxima of such patterns
overlap the lamp.) (a) Would a particular ring become smaller or
larger if the lamp were switched from blue to red light? (b) If a lamp
emits white light, is blue or red on the outside edge of the ring?

8 (a) For a given diffraction grating, does the smallest difference
�l in two wavelengths that can be resolved increase, decrease, or
remain the same as the wavelength increases? (b) For a given
wavelength region (say, around 500 nm), is �l greater in the first
order or in the third order?

9 Figure 36-33 shows a red line and
a green line of the same order in the
pattern produced by a diffraction
grating. If we increased the number
of rulings in the grating— say, by
removing tape that had covered the outer half of the rulings —
would (a) the half-widths of the lines and (b) the separation of the
lines increase, decrease, or remain the same? (c) Would the lines
shift to the right, shift to the left, or remain in place?

10 For the situation of Question 9 and Fig. 36-33, if instead we in-
creased the grating spacing, would (a) the half-widths of the lines and
(b) the separation of the lines increase, decrease, or remain the same?
(c) Would the lines shift to the right, shift to the left, or remain in place?

11 (a) Figure 36-34a shows the lines produced by diffraction
gratings A and B using light of the same wavelength; the lines are
of the same order and appear at the same angles u. Which grating

Figure 36-33 Questions 9
and 10.

Figure 36-34 Question 11.

A

B

(a) (b)

12 Figure 36-35 shows the
bright fringes that lie within
the central diffraction enve-
lope in two double-slit dif-
fraction experiments using
the same wavelength of light.
Are (a) the slit width a, (b)
the slit separation d, and (c) the ratio d/a in experiment B greater
than, less than, or the same as those quantities in experiment A?

13 In three arrangements you view two closely spaced small
objects that are the same large distance from you. The angles that
the objects occupy in your field of view and their distances from
you are the following: (1) 2f and R; (2) 2f and 2R; (3) f/2 and R/2.
(a) Rank the arrangements according to the separation between
the objects, greatest first. If you can just barely resolve the two ob-
jects in arrangement 2, can you resolve them in (b) arrangement 1
and (c) arrangement 3?

14 For a certain diffraction grating, the ratio l/a of wavelength to
ruling spacing is 1/3.5. Without written calculation or use of a cal-
culator, determine which of the orders beyond the zeroth order ap-
pear in the diffraction pattern.

Figure 36-35 Question 12.

A

B
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scale is set by as� 12 rad. What are
(a) the slit width, (b) the total num-
ber of diffraction minima in the pat-
tern (count them on both sides of
the center of the diffraction pat-
tern), (c) the least angle for a mini-
mum, and (d) the greatest angle for
a minimum?

•13 Monochromatic light with wavelength 538 nm is incident on a
slit with width 0.025 mm. The distance from the slit to a screen is 3.5
m. Consider a point on the screen 1.1 cm from the central maximum.
Calculate (a) u for that point, (b) a, and (c) the ratio of the intensity at
that point to the intensity at the central maximum.

•14 In the single-slit diffraction experiment of Fig. 36-4, let the wave-
length of the light be 500 nm, the slit width be 6.00 mm, and the view-
ing screen be at distance D� 3.00 m. Let a y axis extend upward
along the viewing screen, with its origin at the center of the diffraction
pattern. Also let IP represent the intensity of the diffracted light at
point P at y� 15.0 cm. (a) What is the ratio of IP to the intensity Im at
the center of the pattern? (b) Determine where point P is in the dif-
fraction pattern by giving the maximum and minimum between
which it lies, or the two minima between which it lies.

••15 The full width at half-maximum (FWHM) of a
central diffraction maximum is defined as the angle between the two
points in the pattern where the intensity is one-half that at the center
of the pattern. (See Fig. 36-8b.) (a) Show that the intensity drops to
one-half the maximum value when sin2 a� a2/2. (b) Verify that a�
1.39 rad (about 80°) is a solution to the transcendental equation of
(a). (c) Show that the FWHM is �u� 2 sin�1(0.443l/a), where a is the
slit width. Calculate the FWHM of the central maximum for slit width
(d) 1.00l, (e) 5.00l,and (f) 10.0l.

••16 Babinet’s principle. A
monochromatic beam of paral-
lel light is incident on a “colli-
mating” hole of diameter .
Point P lies in the geometrical
shadow region on a distant
screen (Fig. 36-39a). Two dif-
fracting objects, shown in Fig.
36-39b, are placed in turn over
the collimating hole. Object A is
an opaque circle with a hole in
it, and B is the “photographic
negative” of A. Using superpo-
sition concepts, show that the
intensity at P is identical for the
two diffracting objects A and B.

••17 (a) Show that the values
of a at which intensity maxima
for single-slit diffraction occur can be found exactly by differenti-
ating Eq. 36-5 with respect to a and equating the result to zero, ob-
taining the condition tan a� a. To find values of a satisfying this
relation, plot the curve y � tan a and the straight line y � a and
then find their intersections, or use a calculator to find an appro-
priate value of a by trial and error. Next, from , de-
termine the values of m associated with the maxima in the single-
slit pattern. (These m values are not integers because secondary
maxima do not lie exactly halfway between minima.) What are the
(b) smallest a and (c) associated m, the (d) second smallest a and
(e) associated m, and the (f) third smallest a and (g) associated m?

a � (m � 1
2)p

x �  

WWWSSM

Figure 36-37 Problem 10.
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Wire-making
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He-Ne
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L

Figure 36-38 Problem 12.
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minimum of the lb component coincide with the minimum of the
la component in the order number (b) ma� 2 and (c) ma� 3?

•6 Monochromatic light of wavelength 441 nm is incident on a
narrow slit. On a screen 2.00 m away, the distance between the
second diffraction minimum and the central maximum is 1.50 cm.
(a) Calculate the angle of diffraction u of the second minimum.
(b) Find the width of the slit.

•7 Light of wavelength 633 nm is incident on a narrow slit. The
angle between the first diffraction minimum on one side of the
central maximum and the first minimum on the other side is 1.20°.
What is the width of the slit?

••8 Sound waves with frequency
3000 Hz and speed 343 m/s diffract
through the rectangular opening of
a speaker cabinet and into a large
auditorium of length d� 100 m. The
opening, which has a horizontal
width of 30.0 cm, faces a wall 100 m
away (Fig. 36-36). Along that wall,
how far from the central axis will a
listener be at the first diffraction minimum and thus have difficulty
hearing the sound? (Neglect reflections.)

••9 A slit 1.00 mm wide is illuminated by light of wave-
length 589 nm. We see a diffraction pattern on a screen 3.00 m
away.What is the distance between the first two diffraction minima
on the same side of the central diffraction maximum?

••10 Manufacturers of wire (and other objects of small
dimension) sometimes use a laser to continually monitor the
thickness of the product. The wire intercepts the laser beam, pro-
ducing a diffraction pattern like that of a single slit of the same
width as the wire diameter (Fig. 36-37). Suppose a helium –neon
laser, of wavelength 632.8 nm, illuminates a wire, and the diffrac-
tion pattern appears on a screen at distance L � 2.60 m. If the
desired wire diameter is 1.37 mm, what is the observed distance
between the two tenth-order minima (one on each side of the
central maximum)?

ILWSSM

Figure 36-36 Problem 8.

Speaker
cabinet Central

axis

d

Module 36-2 Intensity in Single-Slit Diffraction 
•11 A 0.10-mm-wide slit is illuminated by light of wavelength
589 nm. Consider a point P on a viewing screen on which the dif-
fraction pattern of the slit is viewed; the point is at 30° from the
central axis of the slit. What is the phase difference between the
Huygens wavelets arriving at point P from the top and midpoint of
the slit? (Hint: See Eq. 36-4.)

•12 Figure 36-38 gives a versus the sine of the angle u in a single-slit dif-
fraction experiment using light of wavelength 610 nm. The vertical axis

Figure 36-39 Problem 16.
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Figure 36-41 Problem 28.Tiger beetles are colored by pointillistic
mixtures of thin-film interference colors.

Kjell B. Sandved/Bruce Coleman, Inc./Photoshot Holdings Ltd.

Module 36-3 Diffraction by a Circular Aperture
•18 The wall of a large room is covered with acoustic tile in
which small holes are drilled 5.0 mm from center to center. How
far can a person be from such a tile and still distinguish the indi-
vidual holes, assuming ideal conditions, the pupil diameter of the
observer’s eye to be 4.0 mm, and the wavelength of the room
light to be 550 nm?

•19 (a) How far from grains of red sand must you be to position
yourself just at the limit of resolving the grains if your pupil diame-
ter is 1.5 mm, the grains are spherical with radius 50 mm, and the
light from the grains has wavelength 650 nm? (b) If the grains were
blue and the light from them had wavelength 400 nm, would the
answer to (a) be larger or smaller?

•20 The radar system of a navy cruiser transmits at a wavelength
of 1.6 cm, from a circular antenna with a diameter of 2.3 m. At a
range of 6.2 km, what is the smallest distance that two speedboats
can be from each other and still be resolved as two separate objects
by the radar system?

•21 Estimate the linear separation of two objects on
Mars that can just be resolved under ideal conditions by an
observer on Earth (a) using the naked eye and (b) using the 200 in.
(� 5.1 m) Mount Palomar telescope. Use the following data:
distance to Mars � 8.0 � 107 km, diameter of pupil � 5.0 mm,
wavelength of light� 550 nm.

•22 Assume that Rayleigh’s criterion gives the limit of reso-
lution of an astronaut’s eye looking down on Earth’s surface from a
typical space shuttle altitude of 400 km. (a) Under that idealized as-
sumption, estimate the smallest linear width on Earth’s surface that
the astronaut can resolve. Take the astronaut’s pupil diameter to be
5 mm and the wavelength of visible light to be 550 nm. (b) Can the
astronaut resolve the Great Wall of China (Fig. 36-40), which is
more than 3000 km long, 5 to 10 m thick at its base, 4 m thick at its
top, and 8 m in height? (c) Would the astronaut be able to resolve
any unmistakable sign of intelligent life on Earth’s surface?

WWWSSM

•24 Entoptic halos. If someone looks at a bright outdoor lamp
in otherwise dark surroundings, the lamp appears to be surrounded
by bright and dark rings (hence halos) that are actually a circular dif-
fraction pattern as in Fig. 36-10, with the central maximum overlap-
ping the direct light from the lamp. The diffraction is produced by
structures within the cornea or lens of the eye (hence entoptic). If the
lamp is monochromatic at wavelength 550 nm and the first dark ring
subtends angular diameter 2.5° in the observer’s view, what is the
(linear) diameter of the structure producing the diffraction?

•25 Find the separation of two points on the Moon’s surface
that can just be resolved by the 200 in. ( 5.1 m) telescope at
Mount Palomar, assuming that this separation is determined by
diffraction effects. The distance from Earth to the Moon is 3.8�
105 km.Assume a wavelength of 550 nm for the light.

•26 The telescopes on some commercial surveillance satellites
can resolve objects on the ground as small as 85 cm across (see
Google Earth), and the telescopes on military surveillance satel-
lites reportedly can resolve objects as small as 10 cm across.
Assume first that object resolution is determined entirely by
Rayleigh’s criterion and is not degraded by turbulence in the at-
mosphere.Also assume that the satellites are at a typical altitude of
400 km and that the wavelength of visible light is 550 nm. What
would be the required diameter of the telescope aperture for
(a) 85 cm resolution and (b) 10 cm resolution? (c) Now, consider-
ing that turbulence is certain to degrade resolution and that the
aperture diameter of the Hubble Space Telescope is 2.4 m, what
can you say about the answer to (b) and about how the military
surveillance resolutions are accomplished?

•27 If Superman really had x-ray vision at 0.10 nm wavelength
and a 4.0 mm pupil diameter, at what maximum altitude could he
distinguish villains from heroes, assuming that he needs to resolve
points separated by 5.0 cm to do this?

••28 The wings of tiger beetles (Fig. 36-41) are colored
by interference due to thin cuticle-like layers. In addition, these lay-
ers are arranged in patches that are 60 mm across and produce dif-
ferent colors. The color you see is a pointillistic mixture of thin-film
interference colors that varies with perspective. Approximately

�

ILW

Figure 36-40 Problem 22.The Great Wall of China.

©AP/Wide World Photos

•23 The two headlights of an approaching automobile are
1.4 m apart. At what (a) angular separation and (b) maximum dis-
tance will the eye resolve them? Assume that the pupil diameter is
5.0 mm, and use a wavelength of 550 nm for the light. Also assume
that diffraction effects alone limit the resolution so that Rayleigh’s
criterion can be applied.

SSM
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what viewing distance from a wing puts you at the limit of resolv-
ing the different colored patches according to Rayleigh’s criterion?
Use 550 nm as the wavelength of light and 3.00 mm as the diame-
ter of your pupil.

••29 (a) What is the angular separation of two stars if their im-
ages are barely resolved by the Thaw refracting telescope at the
Allegheny Observatory in Pittsburgh? The lens diameter is 76 cm
and its focal length is 14 m. Assume l � 550 nm. (b) Find the dis-
tance between these barely resolved stars if each of them is 10
light-years distant from Earth. (c) For the image of a single star in
this telescope, find the diameter of the first dark ring in the diffrac-
tion pattern, as measured on a photographic plate placed at the 
focal plane of the telescope lens. Assume that the structure of
the image is associated entirely with diffraction at the lens aper-
ture and not with lens “errors.”

••30 Floaters. The floaters you see when viewing a
bright, featureless background are diffraction patterns of defects
in the vitreous humor that fills most of your eye. Sighting through
a pinhole sharpens the diffraction pattern. If you also view a
small circular dot, you can approximate the defect’s size. Assume
that the defect diffracts light as a circular aperture does. Adjust the
dot’s distance L from your eye (or eye lens) until the dot and the
circle of the first minimum in the diffraction pattern appear to
have the same size in your view. That is, until they have the same
diameter D� on the retina at distance L� �2.0 cm from the front of
the eye, as suggested in Fig. 36-42a, where the angles on the two
sides of the eye lens are equal. Assume that the wavelength of visi-
ble light is l � 550 nm. If the dot has diameter D� 2.0 mm and is
distance L 45.0 cm from the eye and the defect is x 6.0 mm in
front of the retina (Fig. 36-42b), what is the diameter of the defect?

��

(a) (b)

D'
D'

D

Eye
lensCircular

dot
Retina Retina

L L'

x
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θ 
1__
2

D'1__
2

Figure 36-42 Problem 30.

One limitation on such a device is the spreading of the beam due to
diffraction, with resulting dilution of beam intensity. Consider such
a laser operating at a wavelength of 1.40 nm. The element that
emits light is the end of a wire with diameter 0.200 mm.
(a) Calculate the diameter of the central beam at a target 2000 km
away from the beam source. (b) What is the ratio of the beam in-
tensity at the target to that at the end of the wire? (The laser is
fired from space, so neglect any atmospheric absorption.)

•••34 A circular obstacle produces the same diffraction
pattern as a circular hole of the same diameter (except very near
u� 0).Airborne water drops are examples of such obstacles.When
you see the Moon through suspended water drops, such as in a fog,
you intercept the diffraction pattern from many drops. The com-
posite of the central diffraction maxima of those drops forms a
white region that surrounds the Moon and may obscure it. Figure
36-43 is a photograph in which the Moon is obscured. There are
two faint, colored rings around the Moon (the larger one may be
too faint to be seen in your copy of the photograph). The smaller
ring is on the outer edge of the central maxima from the drops; the
somewhat larger ring is on the outer edge of the smallest of the
secondary maxima from the drops (see Fig. 36-10).The color is visi-
ble because the rings are adjacent to the diffraction minima (dark
rings) in the patterns. (Colors in other parts of the pattern overlap
too much to be visible.)

(a) What is the color of these rings on the outer edges of 
the diffraction maxima? (b) The colored ring around the central max-
ima in Fig. 36-43 has an angular diameter that is 1.35 times the angu-
lar diameter of the Moon, which is 0.50°. Assume that the drops all
have about the same diameter.Approximately what is that diameter?

Module 36-4 Diffraction by a Double Slit
•35 Suppose that the central diffraction envelope of a double-slit
diffraction pattern contains 11 bright fringes and the first diffrac-
tion minima eliminate (are coincident with) bright fringes. How
many bright fringes lie between the first and second minima of the
diffraction envelope?

•36 A beam of light of a single wavelength is incident perpendic-
ularly on a double-slit arrangement, as in Fig. 35-10.The slit widths

••31 Millimeter-wave radar generates a narrower beam than
conventional microwave radar, making it less vulnerable to anti-
radar missiles than conventional radar. (a) Calculate the angular
width 2u of the central maximum, from first minimum to first mini-
mum, produced by a 220 GHz radar beam emitted by a 55.0-cm-
diameter circular antenna. (The frequency is chosen to coincide
with a low-absorption atmospheric “window.”) (b) What is 2u for a
more conventional circular antenna that has a diameter of 2.3 m
and emits at wavelength 1.6 cm?

••32 (a) A circular diaphragm 60 cm in diameter oscillates at a
frequency of 25 kHz as an underwater source of sound used for sub-
marine detection. Far from the source, the sound intensity is distrib-
uted as the diffraction pattern of a circular hole whose diameter
equals that of the diaphragm.Take the speed of sound in water to be
1450 m/s and find the angle between the normal to the diaphragm
and a line from the diaphragm to the first minimum. (b) Is there such
a minimum for a source having an (audible) frequency of 1.0 kHz?

••33 Nuclear-pumped x-ray lasers are seen as a possible
weapon to destroy ICBM booster rockets at ranges up to 2000 km.

SSM

Figure 36-43 Problem 34.The corona around the Moon is a composite
of the diffraction patterns of airborne water drops.

Pekka Parvianen/Photo Researchers, Inc.
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the first diffraction-envelope minima to either side of the central
maximum in a double-slit pattern if l � 550 nm, d � 0.150 mm,
and a� 30.0 mm? (b) What is the ratio of the intensity of the third
bright fringe to the intensity of the central fringe?

Module 36-5 Diffraction Gratings
•44 Perhaps to confuse a predator, some tropical gyrinid
beetles (whirligig beetles) are colored by optical interference that
is due to scales whose alignment forms a diffraction grating (which
scatters light instead of transmitting it). When the incident light
rays are perpendicular to the grating, the angle between the first-
order maxima (on opposite sides of the zeroth-order maximum) is
about 26° in light with a wavelength of 550 nm. What is the grating
spacing of the beetle?

•45 A diffraction grating 20.0 mm wide has 6000 rulings. Light of
wavelength 589 nm is incident perpendicularly on the grating.
What are the (a) largest, (b) second largest, and (c) third largest
values of u at which maxima appear on a distant viewing screen?

•46 Visible light is incident perpendicularly on a grating with 315
rulings/mm.What is the longest wavelength that can be seen in the
fifth-order diffraction?

•47 A grating has 400 lines/mm. How many orders of
the entire visible spectrum (400–700 nm) can it produce in a dif-
fraction experiment, in addition to the m � 0 order?

••48 A diffraction grating is made up of slits of width 300 nm with
separation 900 nm. The grating is illuminated by monochromatic
plane waves of wavelength l � 600 nm at normal incidence.
(a) How many maxima are there in the full diffraction pattern?
(b) What is the angular width of a spectral line observed in the first
order if the grating has 1000 slits?

••49 Light of wavelength 600 nm is incident normally
on a diffraction grating. Two adjacent maxima occur at angles given
by sin u� 0.2 and sin u� 0.3. The fourth-order maxima are missing.
(a) What is the separation between adjacent slits? (b) What is the
smallest slit width this grating can have? For that slit width, what are
the (c) largest, (d) second largest, and (e) third largest values of the
order number m of the maxima produced by the grating?

••50 With light from a gaseous discharge tube incident normally
on a grating with slit separation 1.73 mm, sharp maxima of green
light are experimentally found at angles u � �17.6°, 37.3°,�37.1°,
65.2°, and �65.0°. Compute the wavelength of the green light that
best fits these data.

••51 A diffraction grating having 180 lines/mm is illuminated
with a light signal containing only two wavelengths, l1 400 nm
and l2� 500 nm. The signal is incident perpendicularly on the
grating. (a) What is the angular separation between the second-
order maxima of these two wavelengths? (b) What is the smallest
angle at which two of the resulting maxima are superimposed?
(c) What is the highest order for which maxima for both wave-
lengths are present in the diffraction pattern?

••52 A beam of light consisting of wavelengths from
460.0 nm to 640.0 nm is directed perpendicularly onto a diffrac-
tion grating with 160 lines/mm. (a) What is the lowest order that is
overlapped by another order? (b) What is the highest order for
which the complete wavelength range of the beam is present? In
that highest order, at what angle does the light at wavelength (c)
460.0 nm and (d) 640.0 nm appear? (e) What is the greatest angle
at which the light at wavelength 460.0 nm appears?

••53 A grating has 350 rulings/mm and is illuminated at normal
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Figure 36-44 Problem 39.
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are each 46 mm and the slit separation is 0.30 mm. How many
complete bright fringes appear between the two first-order minima
of the diffraction pattern?

•37 In a double-slit experiment, the slit separation d is 2.00 times
the slit width w. How many bright interference fringes are in the
central diffraction envelope?

•38 In a certain two-slit interference pattern, 10 bright fringes lie
within the second side peak of the diffraction envelope and diffrac-
tion minima coincide with two-slit interference maxima. What is
the ratio of the slit separation to the slit width?

••39 Light of wavelength 440 nm passes through a double slit,
yielding a diffraction pattern whose graph of intensity I versus an-
gular position u is shown in Fig. 36-44. Calculate (a) the slit width
and (b) the slit separation. (c) Verify the displayed intensities of
the m � 1 and m � 2 interference fringes.

••40 Figure 36-45 gives the pa-
rameter b of Eq. 36-20 versus the
sine of the angle u in a two-slit inter-
ference experiment using light of
wavelength 435 nm.The vertical axis
scale is set by bs� 80.0 rad.What are
(a) the slit separation, (b) the total
number of interference maxima
(count them on both sides of the
pattern’s center), (c) the smallest angle for a maxima, and (d) the
greatest angle for a minimum? Assume that none of the interference
maxima are completely eliminated by a diffraction minimum.

••41 In the two-slit interference experiment of Fig. 35-10, the slit
widths are each 12.0 mm,their separation is 24.0 mm,the wavelength is
600 nm, and the viewing screen is at a distance of 4.00 m. Let IP repre-
sent the intensity at point P on the screen, at height y� 70.0 cm. (a)
What is the ratio of IP to the intensity Im at the center of the pattern?
(b) Determine where P is in the two-slit interference pattern by giving
the maximum or minimum on which it lies or the maximum and mini-
mum between which it lies. (c) In the same way, for the diffraction that
occurs,determine where point P is in the diffraction pattern.

••42 (a) In a double-slit experiment, what largest ratio of d to a
causes diffraction to eliminate the fourth bright side fringe?
(b) What other bright fringes are also eliminated? (c) How many
other ratios of d to a cause the diffraction to (exactly) eliminate
that bright fringe?

••43 (a) How many bright fringes appear betweenWWWSSM
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Figure 36-45 Problem 40.
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incidence by white light. A spectrum is formed on a screen 30.0 cm
from the grating. If a hole 10.0 mm square is cut in the screen, its
inner edge being 50.0 mm from the central maximum and parallel
to it, what are the (a) shortest and (b) longest wavelengths of the
light that passes through the hole?

••54 Derive this expression for the intensity pattern for a three-slit
“grating”:

where and a� l.

Module 36-6 Gratings: Dispersion and Resolving Power
•55 A source containing a mixture of hydrogen and
deuterium atoms emits red light at two wavelengths whose mean is
656.3 nm and whose separation is 0.180 nm. Find the minimum
number of lines needed in a diffraction grating that can resolve
these lines in the first order.

•56 (a) How many rulings must a 4.00-cm-wide diffraction grating
have to resolve the wavelengths 415.496 and 415.487 nm in the second
order? (b) At what angle are the second-order maxima found?

•57 Light at wavelength 589 nm from a sodium lamp is incident per-
pendicularly on a grating with 40 000 rulings over width 76 nm.What
are the first-order (a) dispersion D and (b) resolving power R, the sec-
ond-order (c) D and (d) R,and the third-order (e) D and (f) R?

•58 A grating has 600 rulings/mm and is 5.0 mm wide. (a) What is
the smallest wavelength interval it can resolve in the third order at
l� 500 nm? (b) How many higher orders of maxima can be seen?

•59 A diffraction grating with a width of 2.0 cm contains
1000 lines/cm across that width. For an incident wavelength of
600 nm, what is the smallest wavelength difference this grating can
resolve in the second order?

•60 The D line in the spectrum of sodium is a doublet with wave-
lengths 589.0 and 589.6 nm. Calculate the minimum number 
of lines needed in a grating that will resolve this doublet in the
second-order spectrum.

•61 With a particular grating the sodium doublet (589.00 nm and
589.59 nm) is viewed in the third order at 10° to the normal and is
barely resolved. Find (a) the grating spacing and (b) the total width
of the rulings.

••62 A diffraction grating illuminated by monochromatic light
normal to the grating produces a certain line at angle u. (a) What is
the product of that line’s half-width and the grating’s resolving
power? (b) Evaluate that product for the first order of a grating of
slit separation 900 nm in light of wavelength 600 nm.

••63 Assume that the limits of the visible spectrum are arbitrarily
chosen as 430 and 680 nm. Calculate the number of rulings per mil-
limeter of a grating that will spread the first-order spectrum
through an angle of 20.0°.

Module 36-7 X-Ray Diffraction
•64 What is the smallest Bragg angle for x rays of wavelength
30 pm to reflect from reflecting planes spaced 0.30 nm apart in a
calcite crystal?

•65 An x-ray beam of wavelength A undergoes first-order reflection
(Bragg law diffraction) from a crystal when its angle of incidence to a
crystal face is 23°, and an x-ray beam of wavelength 97 pm undergoes
third-order reflection when its angle of incidence to that face is 60°.
Assuming that the two beams reflect from the same family of reflecting
planes, find (a) the interplanar spacing and (b) the wavelength A.

ILWSSM

f � (2pd sin u)/l

I � 1
9 Im(1 � 4 cos f � 4 cos2 f),

•66 An x-ray beam of a certain wavelength is incident on an NaCl
crystal, at 30.0° to a certain family of reflecting planes of spacing
39.8 pm. If the reflection from those planes is of the first order,
what is the wavelength of the x rays?

•67 Figure 36-46 is a graph of intensity versus angular position u
for the diffraction of an x-ray beam by a crystal. The horizontal
scale is set by us� 2.00°.The beam consists of two wavelengths, and
the spacing between the reflecting planes is 0.94 nm. What are the
(a) shorter and (b) longer wavelengths in the beam?

0
 (degrees)

In
te

n
si

ty

θ 
sθ 

Figure 36-46 Problem 67.

•68 If first-order reflection occurs in a crystal at Bragg angle 3.4°,
at what Bragg angle does second-order reflection occur from the
same family of reflecting planes?

•69 X rays of wavelength 0.12 nm are found to undergo second-
order reflection at a Bragg angle of 28° from a lithium fluoride
crystal. What is the interplanar spacing of the reflecting planes in
the crystal?

••70 In Fig. 36-47, first-order re-
flection from the reflection planes
shown occurs when an x-ray beam of
wavelength 0.260 nm makes an angle
u � 63.8° with the top face of the
crystal. What is the unit cell size a0?

••71 In Fig. 36-48, let a beam
of x rays of wavelength 0.125 nm be
incident on an NaCl crystal at angle
u 45.0° to the top face of the crys-
tal and a family of reflecting planes.
Let the reflecting planes have sepa-
ration d� 0.252 nm. The crystal is
turned through angle f around an
axis perpendicular to the plane of the
page until these reflecting planes
give diffraction maxima. What are
the (a) smaller and (b) larger value
of f if the crystal is turned clockwise
and the (c) smaller and (d) larger
value of f if it is turned counter-
clockwise?

••72 In Fig. 36-48, an x-ray beam of wavelengths from 95.0 to 140
pm is incident at u� 45.0° to a family of reflecting planes with spac-
ing d� 275 pm.What are the (a) longest wavelength l and (b) associ-
ated order number m and the (c) shortest l and (d) associated m of
the intensity maxima in the diffraction of the beam?

••73 Consider a two-dimensional square crystal structure, such as
one side of the structure shown in Fig. 36-28a.The largest interplanar
spacing of reflecting planes is the unit cell size a0. Calculate and
sketch the (a) second largest, (b) third largest, (c) fourth largest, (d)
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fifth largest, and (e) sixth largest interplanar spacing. (f) Show that
your results in (a) through (e) are consistent with the general formula

where h and k are relatively prime integers (they have no common
factor other than unity).

Additional Problems
74 An astronaut in a space shuttle claims she can just barely re-
solve two point sources on Earth’s surface, 160 km below.
Calculate their (a) angular and (b) linear separation, assuming
ideal conditions.Take l � 540 nm and the pupil diameter of the as-
tronaut’s eye to be 5.0 mm.

75 Visible light is incident perpendicularly on a diffraction
grating of 200 rulings/mm. What are the (a) longest, (b) second
longest, and (c) third longest wavelengths that can be associated
with an intensity maximum at u� 30.0°?

76 A beam of light consists of two wavelengths, 590.159 nm and
590.220 nm, that are to be resolved with a diffraction grating. If the
grating has lines across a width of 3.80 cm, what is the minimum
number of lines required for the two wavelengths to be resolved in
the second order?

77 In a single-slit diffraction experiment, there is a mini-
mum of intensity for orange light (l 600 nm) and a minimum of
intensity for blue-green light (l � 500 nm) at the same angle of
1.00 mrad. For what minimum slit width is this possible?

78 A double-slit system with individual slit widths of 0.030 mm
and a slit separation of 0.18 mm is illuminated with 500 nm light di-
rected perpendicular to the plane of the slits. What is the total
number of complete bright fringes appearing between the two
first-order minima of the diffraction pattern? (Do not count the
fringes that coincide with the minima of the diffraction pattern.)

79 A diffraction grating has resolving power R� lavg/�l�
Nm. (a) Show that the corresponding frequency range f that can
just be resolved is given by �f� c/Nml. (b) From Fig. 36-22, show
that the times required for light to travel along the ray at the bot-
tom of the figure and the ray at the top differ by �t� (Nd/c) sinu.
(c) Show that (�f )(�t)� 1, this relation being independent of the
various grating parameters.Assume N� 1.

80 The pupil of a person’s eye has a diameter of 5.00 mm.
According to Rayleigh’s criterion, what distance apart must two
small objects be if their images are just barely resolved when they
are 250 mm from the eye? Assume they are illuminated with light
of wavelength 500 nm.

81 Light is incident on a grating at an angle c as shown in Fig. 36-49.
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d �
a0

1h2 � k2
,

Show that bright fringes occur at angles u that satisfy the equation

d(sin c� sin u) �ml, for m � 0, 1, 2, . . . .
(Compare this equation with Eq. 36-25.) Only the special case 
c� 0 has been treated in this chapter.

82 A grating with d� 1.50 mm is illuminated at various angles of
incidence by light of wavelength 600 nm. Plot, as a function of the
angle of incidence (0 to 90°), the angular deviation of the first-
order maximum from the incident direction. (See Problem 81.)

83 In two-slit interference, if the slit separation is 14 mm and
the slit widths are each 2.0 mm, (a) how many two-slit maxima are
in the central peak of the diffraction envelope and (b) how many
are in either of the first side peak of the diffraction envelope?

84 In a two-slit interference pattern, what is the ratio of slit
separation to slit width if there are 17 bright fringes within the cen-
tral diffraction envelope and the diffraction minima coincide with
two-slit interference maxima?

85 A beam of light with a narrow wavelength range centered on
450 nm is incident perpendicularly on a diffraction grating with a
width of 1.80 cm and a line density of 1400 lines/cm across that
width. For this light, what is the smallest wavelength difference this
grating can resolve in the third order?

86 If you look at something 40 m from you, what is the smallest
length (perpendicular to your line of sight) that you can resolve,
according to Rayleigh’s criterion? Assume the pupil of your eye
has a diameter of 4.00 mm, and use 500 nm as the wavelength of
the light reaching you.

87 Two yellow flowers are separated by 60 cm along a line per-
pendicular to your line of sight to the flowers. How far are you
from the flowers when they are at the limit of resolution accord-
ing to the Rayleigh criterion? Assume the light from the flowers
has a single wavelength of 550 nm and that your pupil has a diam-
eter of 5.5 mm.

88 In a single-slit diffraction experiment, what must be the ratio
of the slit width to the wavelength if the second diffraction minima
are to occur at an angle of 37.0° from the center of the diffraction
pattern on a viewing screen?

89 A diffraction grating 3.00 cm wide produces the second order
at 33.0° with light of wavelength 600 nm. What is the total number
of lines on the grating?

90 A single-slit diffraction experiment is set up with light of
wavelength 420 nm, incident perpendicularly on a slit of width
5.10 mm. The viewing screen is 3.20 m distant. On the screen, what
is the distance between the center of the diffraction pattern and
the second diffraction minimum?

91 A diffraction grating has 8900 slits across 1.20 cm. If light with
a wavelength of 500 nm is sent through it, how many orders (max-
ima) lie to one side of the central maximum?

92 In an experiment to monitor the Moon’s surface with a light
beam, pulsed radiation from a ruby laser (l� 0.69 mm) was di-
rected to the Moon through a reflecting telescope with a mirror ra-
dius of 1.3 m. A reflector on the Moon behaved like a circular flat
mirror with radius 10 cm, reflecting the light directly back toward
the telescope on Earth. The reflected light was then detected after
being brought to a focus by this telescope. Approximately what
fraction of the original light energy was picked up by the detector?
Assume that for each direction of travel all the energy is in the cen-
tral diffraction peak.
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93 In June 1985, a laser beam was sent out from the Air Force
Optical Station on Maui, Hawaii, and reflected back from the shuttle
Discovery as it sped by 354 km overhead.The diameter of the central
maximum of the beam at the shuttle position was said to be 9.1 m,
and the beam wavelength was 500 nm.What is the effective diameter
of the laser aperture at the Maui ground station? (Hint: A laser beam
spreads only because of diffraction; assume a circular exit aperture.)

94 A diffraction grating 1.00 cm wide has 10 000 parallel slits.
Monochromatic light that is incident normally is diffracted
through 30° in the first order. What is the wavelength of the light?

95 If you double the width of a single slit, the intensity of
the central maximum of the diffraction pattern increases by a
factor of 4, even though the energy passing through the slit only
doubles. Explain this quantitatively.

96 When monochromatic light is incident on a slit 22.0 mm wide,
the first diffraction minimum lies at 1.80° from the direction of the
incident light.What is the wavelength?

97 A spy satellite orbiting at 160 km above Earth’s surface has a lens
with a focal length of 3.6 m and can resolve objects on the ground as
small as 30 cm. For example, it can easily measure the size of an air-
craft’s air intake port.What is the effective diameter of the lens as de-
termined by diffraction consideration alone? Assume l� 550 nm.

98 Suppose that two points are separated by 2.0 cm. If they are
viewed by an eye with a pupil opening of 5.0 mm, what distance
from the viewer puts them at the Rayleigh limit of resolution?
Assume a light wavelength of 500 nm.

99 A diffraction grating has 200 lines/mm. Light consisting of a
continuous range of wavelengths between 550 nm and 700 nm is
incident perpendicularly on the grating. (a) What is the lowest or-
der that is overlapped by another order? (b) What is the highest
order for which the complete spectrum is present?

100 A diffraction grating has 200 rulings/mm,and it produces an in-
tensity maximum at u� 30.0�. (a) What are the possible wavelengths
of the incident visible light? (b) To what colors do they correspond?

101 Show that the dispersion of a grating is D � (tan u)/l.

102 Monochromatic light (wavelength � 450 nm) is incident per-
pendicularly on a single slit (width � 0.40 mm). A screen is placed
parallel to the slit plane, and on it the distance between the two
minima on either side of the central maximum is 1.8 mm. (a) What
is the distance from the slit to the screen? (Hint: The angle to ei-
ther minimum is small enough that sin u tan u.) (b) What is the
distance on the screen between the first minimum and the third
minimum on the same side of the central maximum?

103 Light containing a mixture of two wavelengths, 500 and 
600 nm, is incident normally on a diffraction grating. It is desired
(1) that the first and second maxima for each wavelength appear at
u 30�, (2) that the dispersion be as high as possible, and (3) that
the third order for the 600 nm light be a missing order. (a) What
should be the slit separation? (b) What is the smallest individual
slit width that can be used? (c) For the values calculated in (a) and
(b) and the light of wavelength 600 nm, what is the largest order of
maxima produced by the grating?

104 A beam of x rays with wavelengths ranging from 0.120 nm to
0.0700 nm scatters from a family of reflecting planes in a crystal.
The plane separation is 0.250 nm. It is observed that scattered
beams are produced for 0.100 nm and 0.0750 nm. What is the angle
between the incident and scattered beams?

�

�

SSM

SSM

105 Show that a grating made up of alternately transparent and
opaque strips of equal width eliminates all the even orders of max-
ima (except m� 0).

106 Light of wavelength 500 nm diffracts through a slit of width
2.00 mm and onto a screen that is 2.00 m away. On the screen, what
is the distance between the center of the diffraction pattern and
the third diffraction minimum?

107 If, in a two-slit interference pattern, there are 8 bright fringes
within the first side peak of the diffraction envelope and diffrac-
tion minima coincide with two-slit interference maxima, then what
is the ratio of slit separation to slit width?

108 White light (consisting of wavelengths from 400 nm to 700 nm)
is normally incident on a grating. Show that, no matter what the
value of the grating spacing d, the second order and third order
overlap.

109 If we make d � a in Fig. 36-50, the two slits
coalesce into a single slit of width 2a. Show that
Eq. 36-19 reduces to give the diffraction pattern
for such a slit.

110 Derive Eq. 36-28, the expression for the
half-width of the lines in a grating’s diffraction
pattern.

111 Prove that it is not possible to determine
both wavelength of incident radiation and spacing
of reflecting planes in a crystal by measuring the
Bragg angles for several orders.

112 How many orders of the entire visible spec-
trum (400–700 nm) can be produced by a grating of 500 lines/mm?

113 An acoustic double-slit system (of slit separation d and
slit width a) is driven by two loudspeakers as shown in Fig. 36-51. By
use of a variable delay line, the phase of one of the speakers may be
varied relative to the other speaker. Describe in detail what changes
occur in the double-slit diffraction pattern at large distances as the
phase difference between the speakers is varied from zero to 2p.
Take both interference and diffraction effects into account.
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Figure 36-50
Problem 109.

Audio
signal

generator

Variable
delay
line

Speakers

Figure 36-51 Problem 113.

114 Two emission lines have wavelengths l and l � �l, respec-
tively, where �l l. Show that their angular separation �u in a
grating spectrometer is given approximately by

where d is the slit separation and m is the order at which the lines
are observed. Note that the angular separation is greater in the
higher orders than the lower orders.

�u �
�l

2(d/m)2 � l2
,
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